

Eliminating the High Cost of Over Pumping

Eliminating the High Cost of Over Pumping

- Flow Study and Pumping Cost Analysis
- System Design and Sizing (Valve-Coils-Chillers)
- Pressure Independent Valves/Dynamic Balancing
- Delta T Management, Correcting Low Delta T
- Case Studies
- Data Analysis, Optimization and Functionality
- Calculate Savings
- Heating Applications
- Systems Running as Designed

Independent Energy Modeling Study Chilled Water System, Average Delta T = 6 Peak Load 26,000 Tons

MIT Load Duration Curve with CHW ΔT

* From 2008 Chilled Water Delta T Study

```
Independent Study
Savings by Eliminating Low Delta T
Increase DT from 6 to 12 degrees (12 = Design)
```

Recommend implementing chilled water delta T improvement projects across the campus.

Component	Annual Energy Savings	Annual Cost Savings
Chiller Steam	10,887 Mlbs	\$181,000.00
Chiller Electric	2,576,000 kWh	\$412,000.00
CHW Pump Electric	2,334,000 kWh	\$373,000.00 25% of Total
CW Pump Electric	2,417,000 kWh	\$387,000.00
CT Fan Electric	740,000 kWh	\$118,000.00
TOTAL SAVINGS		\$1,471,000.00

Pressure Independent & Delta T Manager Pump Savings in Large Tech Company in NC

20

Delta T vs. Tons - B500 AHU3

Belimo Energy Valve™ Savings Estimator

Project Sample Site Climate Region 33 Turner Road, Danbury, CT Version 1.0 / 2 Chillers / Simple static pressure pump control North East

INPUT DATA: VARIABLE FLOW CHILLED WATER PLANT

	Value	Unit
Electricity Cost (Average)	0.10	\$/kWh
Chilled Water Plant Load (Design Cooling Load)	500	tons
Number Of Chillers	2	pcs.
Operating Hours / Day	24	hours
Operating Days / Week	7	days
Chiller Efficiency (IPLV)	1	kW/ton
Actual Pump Head (Design)	120	ft.
Min. Pump Head	40	ft.
Pump, Vfd, Motor Efficiency (Average)	60	%
Design Delta T	12	°F
Actual Delta T (Prior Energy Valve Installation)	6	°F
Future Delta T (Energy Valve Delta T Manager Setting)	12	°F

ANNUAL ENERGY COSTS

Delta-T [°F]	Flow [GPM]	Pumpi	ng Cost	Chi	ller Cost	To	tal Cost	Energy [kWh]
	1333			3	222,817	4	251,538	2,515,364
6	10355	\$	24,098	S	220,322	\$	244,420	2,444,197
	1333	\$	17,436	S	215,331	\$	232,767	2,327,666
10	1200	\$	12,848	\$	210,339	\$	223,187	2,231,869
12	1000	5	9,773	\$	205,348	\$	215,122	2,151,216
10	923		8,668	.5	202.853	\$	211,520	2,115,202
the local data and the providence of the local data and the local data								
Annual Energy Annual Cost S	/ Savings avings (Cash Fid	ow)		-			292,981 29,298	kWh \$
Annual Energy Annual Cost S	/ Savings avings (Cash Fic	9W)	INPUT F	INAN	NCIALS		292,981 29,298	kWh \$
Annual Energy Annual Cost S	/ Savings avings (Cash Fic	ow)	INPUT F	INAN	NCIALS		292,981 29,298 Value	kWh \$ Unit
Annual Energy Annual Cost S	/ Savings avings (Cash Fic	ow) inergy Va	INPUT F	INAN	NCIALS		292,981 29,298 Value 50,000	kWh \$ Unit
Annual Energy Annual Cost S Incremental Discount Ra	r Savings avings (Cash Fic Investment for E te	ow) inergy Va	INPUT F	INAN	NCIALS	-	292,981 29,298 Value 50,000 10	kWh \$ Unit \$

	INANCIAL AN	NALYSIS RESI	JLTS	
Investment Horizon	5 years	10 years	15 years	20 years
Accounting Rate of Return	62%	67%	73%	79%
Net Present Value (NPV)	\$67,269	\$151,681	\$212,442	\$256,179

GREENHOUSE GAS EQUIVALENTS

	Value	Unit
Annual Carbon Dioxide Avoided	455,586	pounds
Annual Carbon Dioxide Avoided	207	metric tons
Equivalent to Number of Houses' Annual Electricity Use	28	homes

DISCLAIMER

Copyright by BELIMO Aircontrols (USA), Inc., Danbury, CT, 2014. This is an estimating tool. Results are dependent on the accuracy of input values and specific plant details. For more accurate results, additional plant data and complex modeling software is necessary. In order to better analyze an existing plant we are recommending to install 3 Energy Valves at strategic locations in order to obtain actual measured data.

At 50% load and 6 degrees DT flow = 1000 GPM Increasing DT to 12 degrees (design) flow reduces to 500 GPM

Chilled Wat	ter Distributi	on Flow at	: Delta T [F]:	6
Load [%]	Time [%] 🚹	Time [h]	Flow [GPM]	Head [ft]
100	6	526	1333	139
75	15	1314	1333	139
50	35	3000	1000	120
25	44	3854	500	85

Chilled Wa	ter Distributi	on Flow at	Delta T [F]:	12
Load [%]	Time [%] 🚹	Time [h]	Flow [GPM]	Head [ft]
100	6	526	1000	120
75	15	1314	750	104
50	35	3000	500	85
25	44	3854	250	60

Pressure Dependent Flow Coefficient-Valve Sizing (CV)

$$Cv = \frac{GPM}{\sqrt{\Delta P}}$$

- 1 Cv = 1 gallon of 60 DegF water passing through a fully open control valve with a pressure drop of 1 psi.
- Sizing is typically done using a PD of 3-5 PSI
- Manual balancing can not maintain a constant PD and causes overflow and low delta T.

when the pressure drop increases the flow increases

Balancing Valve Sizing & Selecting

Balancing valves are sized based on GPM. Sizing is generally done using the "nominal flow" (not max or min flow)

Setting is done by rotating a handle and adjusting the CV to achieve a specific pressure drop.

Balancing Valves are set for one pressure drop and are effected by pressure changes.

when the pressure drop increases the flow increases

Manual Balancing Valves

when the pressure drop increases the flow increases

Why Systems Over Flow? Valve Authority

Flow and delta T are inversely proportional; for a given load, when delta T drops flow has to increases.

$$GPM = \frac{Tons \times 24}{\Delta T}$$

$$2000 \text{ GPM} = \frac{Tons \times 24}{12^{\circ}\Delta T} \longrightarrow \frac{2000 \text{ GPM}}{2} = Tons$$

$$2000 \text{ GPM} = Tons \times 2 \longrightarrow Tons = 1000$$

Cost of Overflow at the Plant

Plant Efficiency

Chillers

- Plant is more efficient at Design △T than at low △T
- Low DT (high flows) can cause Improper staging

$$GPM = \frac{Tons \times 24}{\Delta T}$$
$$GPM = \frac{500 \times 24}{12} = 1,000$$
$$GPM = \frac{500 \times 24}{8} = 1,500$$

Chilled and Hot Water Coil Design

UNIT

NO

```
CHW Coil= GPM, EWT=44, LWT=60,
 DT=16
 HW Coil = GPM, EWT=140, LWT=120,
 DT=20
 CHW DT= 8 will increase pumping X 2,
 Increase cost X 8.
                       FAN SECTIONS
                                                                        HOT WATER COIL
                                                                                                            CHILLED WATER COIL
                                                                AIR DATA WATER DATA VEL AIR WATER ROWS
                                                                                                             WATER DATA VEL AIR WATER ROWS
              VENTILATION
                           EXT. WHEEL FAN MAX
                                               ELECTRICAL
                                                             CAP
                                                                                                CAP
                                                                                                     AIR DATA
                                   RPM BHP
                                                            MBH EAT LAT EWT LWT GPM FPM PD
                                                                                                MBH
                                                                                                     EAT LAT EWT LWT GPM FPM PD
                           SP
                               TYPE
                                                                                       PD
                                                                                           FINS
OCATION
        SERVES
              DES. MIN.
                       CEM
                                          HP
                                              VOLTS
                                                    PH
                                                        RPM
                                                                                                                             PD
                                                                                                                                 FINS
               2 000
                       10 713
                           TOO" DITNOR
                                    1718 No. 7 703 88
                                                                                                    ALL DRAW AND AND AND AND
                                                                                                                 AD 83.7 815 0.01
      WERE STORE & B. I
                   1.247
                                                400
```

99.00-1	alanti Heart Heart	REDT SEALS HIS T	1,000	3,400	10,740	#.005F	- Fallinger	11.16	-63.7	141.10	400				-	-	-	-		-	-			Dires/ House	- very users	anayanır.	1.64	00	9901	- 214.	aver.	2.02	ey na ree
AHI-2	BSMT WEST MER	CLASSROOM A17	554	111	2,560	1.25*	PLENUM	3852	2.77	5	480	3	1750	69.4	50.0	75.0	140	120	7.0	480	0.114"	0.22	1/135 FPF	96.3/75.6	76.9/63.2F	50.0/49.9F	44	60	12.5	480	1.005*	6.67	8/141 FPF
440-3	BSMT WEST HER	FORUM	2,432	168	4,925	2.00*	PLENUM	2350	7.10	7.5	480	3	1750	133.5	50.0	75.0	140	120	13,4	438	0.075"	0.89"	1/112 FPF	223.8/147.6	77.2/65.5F	50.0/49.9F	44	60	29.7	417	0.844*	4.59	8/140 FPF
AHU-4	BSHT WEST NER	SOUTH ATRIUM	6,585	589	8,860	2.00*	PLENUM	2218	11.28	(2) 7.5	480	3	1200	240.2	50.0	75.0	140	120	24.1	368	0.051"	1.3ť	1/98 FPF	502.9/293.5	79.0/68.0F	49.0/48.9F	44	59	62,7	368	0.680*	11.25	8/133 FPF
AHU-5	BSMT EAST NER	EAST	1,100	106	6,525	2.00"	PLENUM	2181	7.88	10	480	3	1750			-	-	-	-	_	_			167.8/149.8	75.4/62.73F	54.5/53.9F	44	60	20.1	497	0.542*	2.25	6/103 FPF
APU-6	BSMT EAST NER	QLASSROOM A71	687	109	2543	1.25*	PLENIM	2810	2.98	5	480	3	3600	69.0	50.0	75.0	140	120	6.91	477	0.085*	0.64"	1/123 F/F	96.1/76.0	77.2/63.3F	50.0/49.9F	44	60	11.97	477	0.989*	17,61	8,/140 FPF
AHU-7	PENTHOUSE	CHILLED REAMS	19,200	8,231	22,183	2.00*	PLENUM	2475	51.35	(3) 20	480	3	1750	513.7	45.0	55.0	140	120	80,6	514.6	0.090"	1.42'	1/123 FPF	1.328.4/	77.5/69.0F	50.4/50.3F	44	60	(2)106.7	489.6	1.12*	20.68	10/139 FPF
AHU-8	PENTHOUSE	VEST LEVEL 2 & 3	6,300	1,372	19.875	2,00*	PLENUM	1695	25,57	(2) 15	480	1	1750					-	_	-				522.9/475.8	9 76.1/62.9F	54.3/53.9F	- 64	60	65.Z	516	0.637*	3.99	8/115 FPF
AHU-9	PENTHOUSE	CHILLED BEAMS	8,000	3,872	10,402	2.00*	PLENUM	2539	16.79	(2) 10	480	3	1200	270.0	50.0	75.0	140	120	27,0	514.6	0.090*	1.42*	1/123 FPF	750.4 329.8	78.8/72.8F	50.4/50.3F	- 44	60	\$3.5	363	0.649"	9.32	8/116 FPF
AHU-10	PENTHOUSE	AHU-5,5, & 8	7,687	7,687	7,687	2.00*	PLENUM	2303	8.38	(2) 5	480	3	1750			-		_	-	_							_	_	_	_	_		

Low Delta T at the Coil Delta T Decreases, Flow Increases No Additional Heat Transferee

Design, Not the Solution

Deny or Choke Valve, will not allow a coil to run as designed. This application will negate proper dehumidification and comfort.

Causes of Low Delta T

- Oversized chillers, pumps, coils, control valves and piping
- Controlling the chilled water valve using only the air sensor is insufficient
- Manual balancing only addresses one flow condition
- Systems rarely run at full load causing overflow at part load
- Hydronic systems are changed but not rebalanced

Correcting Low Delta T Delta T Management .5" thru 6"– .5 thru 713 GPM

Terminal Unit Pressure Independent Valve

2-Way PIQCV (Pressure Independent) ¹/₂" and ³/₄" NPT, Fail Last or Fail Safe Up to 9 GPM 100 PSI Close Off **Mechanical operation**

Electronic Pressure Independent Valve Flow Meter Balancing 1/2"- 6", 1.65 thru 713 GPM

Library Case Study

Case Study Issues

- Coil Delta T reported as 6 Degree F
- Over pumping
- Low Delta T Syndrome at Chiller Plant

6 AHU units, 153,000 sq-ft

Case Study

AHU-6, CHW Delta T with Belimo SL System Globe Valve test Delta T control deactivated.

DT(F), AHU-6 8/18-8/29/2010

Case Study

AHU-6, CHW Delta T with Delta T control active Globe Valve test.

AHU-6, DT(F), 7/3 thru 7/14/2010

Case Study Setup

- 5 Energy Valves
- 1 Tandem PICCV with Delta T Manager
- Chilled Water is designed to run through a coil at a designed temperature drop to supply air conditioned cooling air and to de-humidify. i.e. Water delta T=12 degrees F.

Case Study Library Whole Building Results

2011 vs. 2010 Flow

- 8/9-10/9 2010 6.15 F DT
- 8/9-10/9 2011 12.14 F DT
- From whole building meters, Metering data PI archive
- Tonsx24/GPM= Weighted Average Delta T

6 AHU units - 153,000 sq-ft

NJ Pharmaceutical AHU 1, July 13, 2016

Standby	Position Control	Flow Control	Power Control
Active	DeltaT Manager Active	DeltaT Manager Active	DeltaT Manager Active Status
	No Position Control Minutes	33%	No Power Control Minutes

	Position	Control	Flow C	ontrol	PowerC	Control
Delta I - Manager Active Status	Above	Below	Above	Below	Above	Below
Specify Delta T Threshold	12	12	17	17	12	12
Minutes Above or Below			200	1240		
Percent Above or Below			14%	86%		

Setpoint DDC ----- Flow ----- Projected Flow

The DeltaT Manager has been set to ON for 1440 minutes out of the 1 Day of captured data.

The DeltaT Manager status is:

The Active % by Control Modes indicates the amount of time the DeltaT Manager has taken control over the DDC signal to prevent over flow and low coil DeltaT.

SAVINGS CALCULATOR

The projected flow rate thru the valve if the DeltaT Manager was not enabled would be 152.44 GPM which would have produced 73,170.04 GPM of water compared to the Actual amount of 35,248.80 GPM which is a savings of 52% or 37,921.24 GPM.

New Definitions

Power Saturation Point

 Point beyond which coil cannot yield additional heat transfer regardless of increased flow.

Waste Zone

Range beyond the "Power Saturation Point."

Energy Valve Delta T Manager Operation

Chilled & Hot Water Coil design Energy Valve/Delta T Manager Coils function per design GPM and Delta T

-														-			Į			,								Į	J				
					FAN S	SECTION	S										H	IOT W	ATER!	COIL				Service .			HILLE	D WA	TER (COIL			
UNIT NO	LOCATION	SERVES	VENTIL DES.	ATION MIN.	CFM	EXT. SP	WHEEL	FAN	BHP	HP	ELECT VOLTS	RICAL PH	RPM	CAP M8H	AIR EAT	LAT	EWT	TER D	GPM	VEL FPM	AIR PD	WATER PD	ROWS FINS	CAP MBH	AIR EAT	LAT	WAT EWT	LWT	ATA GPM	VEL FPM	AIR PD	WATER PD	ROWS FINS
AHU-1	BSMT WEST NER	WEST LEVEL A & 1	7,000	1,247	19,733	2.00*	PLENUM	1718	26.7	(2) 15	480	3	1750					-	-					511.4/468.2	76.1/62.9F	54.5/34.9	64	60	\$3.7	512	0.611*	3.83	6/113 FPF
AHU-2	BSMT WEST MER	CLASSROOM A17	554	111	2,560	1.25*	PLENUM	3852	2.77	5	480	3	1750	69.4	50.0	75.0	140	120	7.0	480	0.314"	0.22	1/135 FPF	95.3/75.6	76.9/63.2F	50.0/49.9F	44	60	12.0	480	1.005*	6.67	8/141 FPF
440-3	BISMT WEST HER	FORUM	2,432	168	4,925	2.00*	PLENUM	2350	7.10	7.5	480	3	1750	133.5	30.0	75.0	140	120	13,4	438	0.075*	0.89"	1/112 FPF	223.8/147.6	77.2/65.5F	50.0/49.9F	44	60	29.7	417	0.844*	4.50	8/140 FPF
AHU-4	BSHT WEST NER	SOUTH ATRIUM	6,585	589	8,860	2.00*	PLENUR	2218	11.28	(2) 7.5	480	3	1200	240.2	50.0	75.0	140	120	24.1	368	0.051*	1.3ť	1/98 FPF	502.9/293.	79.0/68.0F	49.0/48.9F	44	59	62.7	368	0.680*	11.25	8/133 FP
AHU-5	BSMT EAST NER	EAST	1,100	106	6,525	2.00*	PLENUM	2181	7.88	10	480	3	1750			-	-	-		_	_			167.8/149.8	75.4/62.73F	54.5/53.9F	44	60	20.1	497	0.542*	2.25	6/103 FPF
AHU-6	BSMT EAST NER	OLASSROOM A71	687	109	2543	1.25*	PLENIM	2810	2.98	5	480	3	3600	69.0	50.0	75,0	140	120	6.91	477	0.085*	0.64	1/123 FPF	98.1/76.0	77.2/63.3F	50.0/49.9F	44	60	11.97	477	0.989*	17,61	8,/140 FP4
AHD-7	PENTHOUSE	CHILLED REAMS	19,200	8,231	22,183	2.00*	PLENUM	2475	51.35	(3) 20	480	3	1750	513.7	45.0	55.0	140	120	80,6	514.6	0.090"	1.42'	1/123 FPF	1328.4/	77.5/69.0F	50.4/50.3F	44	60	(2)106.7	489.6	1.12*	20.68	10/139 FP6
AHU-8	PENTHOUSE	VEST LEVEL 2 & 3	6,300	1,372	19.875	2.00*	PLENUM	1695	25.57	(2) 15	480	3	1750			_	-	-	-	-	_			522.9/475/	s 76.1/62.9f	54.3/53.9F	-64	60	65.2	516	0.637*	3.99	8/115 FP1
NHU-9	PENTHOUSE	CHILLED BEAMS	8,000	3,872	10,402	2.00*	PLENUM	2539	16.79	(2) 10	480	3	1200	270.0	50.0	75.0	140	120	27.0	514.6	0.090*	1.42*	1/123 FPF	750.4 329.8	78.8/72.8F	50.4/50.3F	- 64	60	\$3.5	363	0.649"	9.32	8/1% FPF
AHU-10	PENTHOUSE	AHU-5,5, & 8	7,687	7,687	7,687	2.00"	PLENUM	2303	8.39	(2) 5	480	3	1750				_	-	_			-				_	_	-	_	-	-		

Chiller Plant & Pumps Run as Designed VFD at Min Flow per Demand

Plant Efficiency

Chillers

- Plant is more efficient at Design △T than at low △T
- Low DT (high flows) can cause Improper staging

Energy Valve Overview

Actuator

3

4

Webserver, data logger, BACnet, Modbus, MP-Bus, Cloud capability

2 Electronic Flow Meter True Flow, Wet calibrated

Temperature SensorsPlatinum based RTD for supply and return,allowing BTU measurement

Logic Delta T Management and flow meter, pressure independent balancing

Measure, Observe, Record and Trend Performance Data

Data Acquisition

The Energy Valve will trend and store:

- Flow
- Delta T
- Energy Output
- Power Output
- Totalized Energy
- Calculate Savings

Data Acquisition Live information

Data Acquisition Data Export and the Excel Tool

Energy Valve

- Data Logging and Storage
- Up to 13 Months of Data
- Export to .csv file format
- Charts, Graphs, Trending

Excel Tool

- Import .csv in to Excel Tool
- Power Curves
- Charts, Graphs, Trending

Optimization Settings

Belimo Energy Valve	1/2" DN 15	Override			
√nom 5.55 g	pm Pnom 273 kBTU/h	Nons	None	~	
	Management and approved a subscript of				
Start assistant	Commissioning report				
Settings import	Settings export				
225 0 P 2 7 4 7 7 8 2 0 M					
Configuration					
Units		Control settings			
Temperature	F 🗸	Control mode	Flow control	<u> </u>	
Prove	gpm Mitta	Signal characteristic	equal percentage	×	
Energy	квто	Control signal range	2 - 10 V		
		Invert signal	not inverted	~	
Application		Maximum and limitation		-	
Installation position	Valve in return pipe	Vinax	2.000 gpm		
Remote sensor cable length	3m 🔛	Main 🗖 🙃	Harge 1.004 - 5.048		
Media	Water				
Analog feedback		Delta T Manager		_	
Feedback	Flow 🔽	dT Limiting function	dT Manager 🔽		
Range	2 - 10 V	dT Limiting value	10.0 F		
Maximam	5.5 gpm		Harge 1.8 - 100.0		

Enhanced Communication Unlike Any Actuator on the Market

Energy Valve 3.0 Cloud Services Advanced Optimization with Multiple Benefits

Data Analysis Analyzing the Power Curve

Parameterization Tools Hand Held Device (ZTH-US)

- Quick Programming
- Quick Reconfiguration
- Fast Commissioning
- Local Display

Condensing Boiler Applications Delta T Manager Set Water Delta T per design

Before Adding Pumps, Chillers & Boilers Correct Water Delta T

- A plant designed at 500 tons of cooling & 12 Degree Delta T can produce 1000 GPM. At 12 degrees, 40% load, Flow=400 GPM.
 At 6 degree, 40% load, Flow=800 GPM
- Annual cost at 6 degrees=\$24,203, at 12 degrees \$9,730.00

Consequences of Over Pumping

- Additional chillers and associated equipment are utilized
 - Chillers run at part load and operated at a higher energy rate per ton of cooling
- Diminished equipment life and increased maintenance needs
- Unstable control
- Compromised occupant comfort

Eliminating the High Cost of Over Pumping Thank You

Shanghai Energy-Saving "Golden Key" Award

