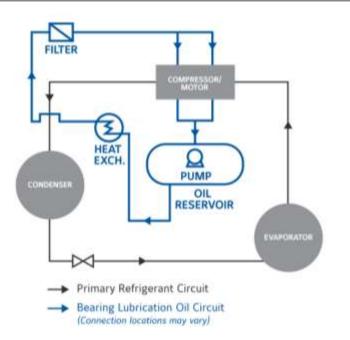
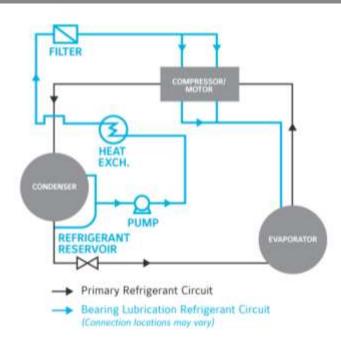
Choosing Magnetic Bearing Technology for Improved Performance

Agenda

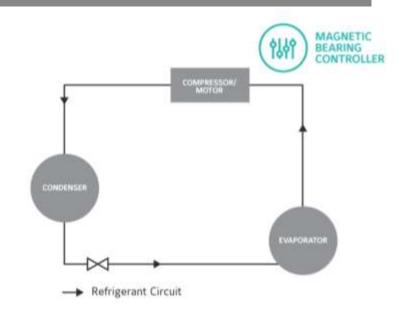
- Magnetic bearing background
- Core magnetic bearing benefits
- University of Texas at Austin background
- System performance
- Additional magnetic bearing benefits


History of Magnetic Bearing Technology

- First patents came during WWII
- Magnetic bearing technology introduced in 1998 on critical naval applications
- Introduced in commercial HVAC in 2002
- Bearings support load using magnetic levitation

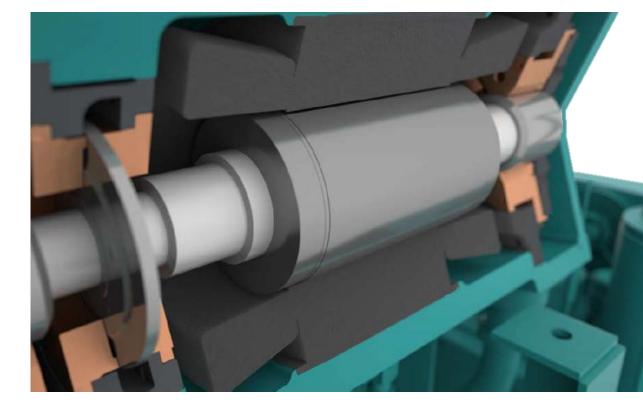


Bearing Options for Centrifugal Chillers


OIL-LUBRICATED BEARINGS

REFRIGERANT-LUBRICATED BALL BEARINGS

MAGNETIC BEARINGS


Magnetic Driveline Benefits

Single moving assembly suspended in a magnetic field with no lubrication system

- 80% fewer moving parts
- Non-contact design

Magnetic bearings deliver

- Extraordinary efficiency & wide operating map
- Superior durability
- Simplified maintenance

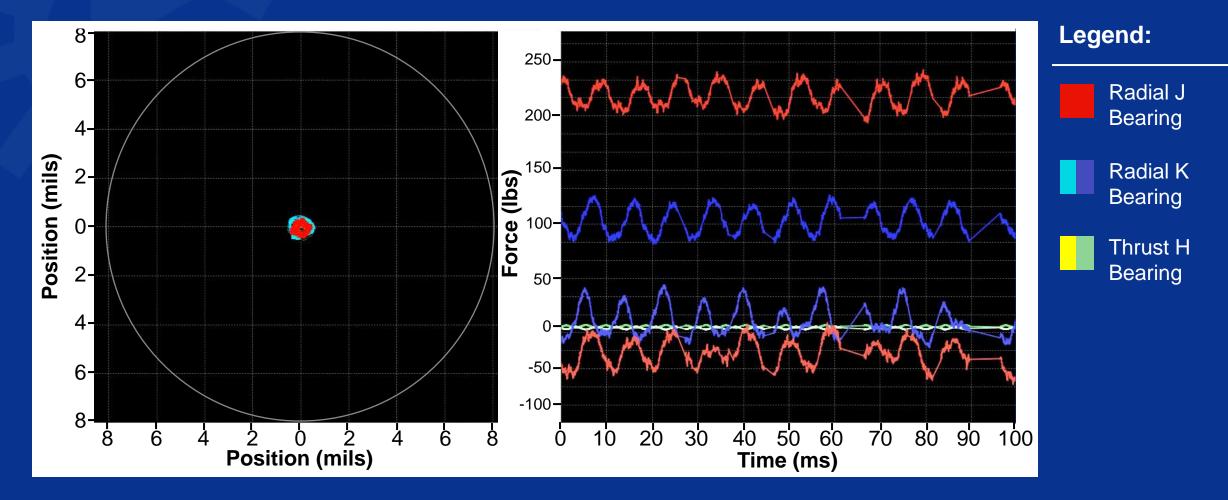
Enhanced longevity & reduced maintenance!

Highly Engineered Technology Offers Simplicity

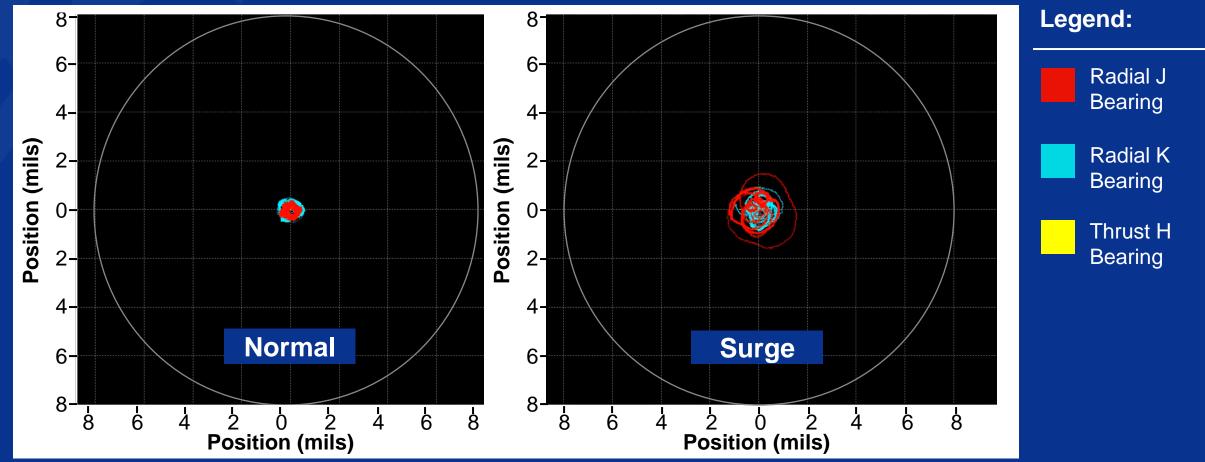
- Highly complex design behind the scenes
- Magnetic bearing controller is measuring and responding 20,000 times per second

One mil is = 1/1000 th of an inch = 0.025 mm = "less than the width of a human hair" Sensing position down to hundredth of a mil and correcting position to remain centered

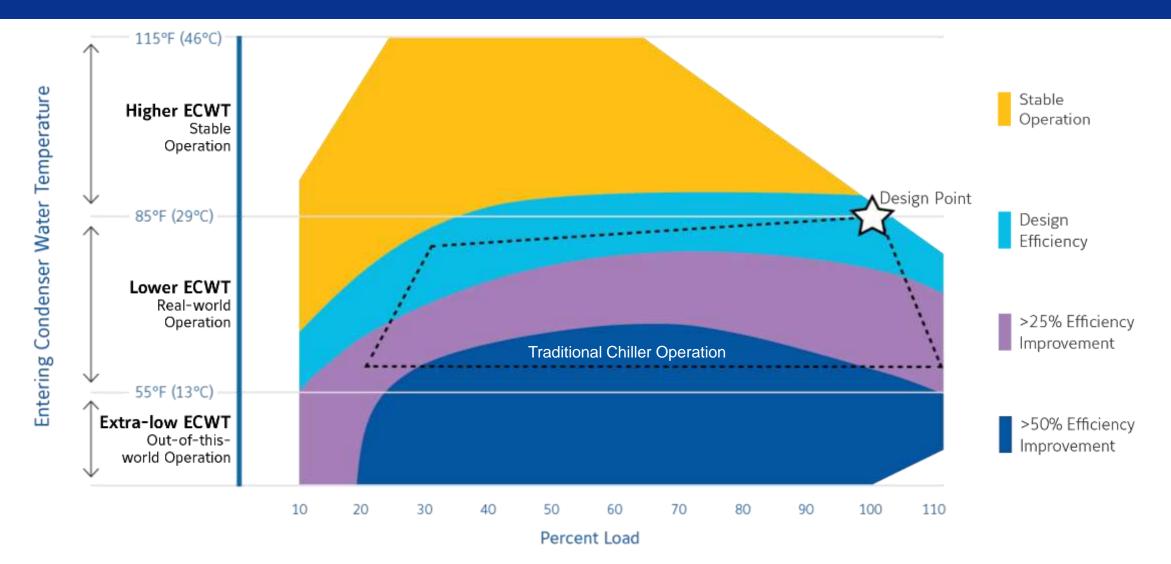
MAGNETIC BEARING CONTROLLER (MBC)	SCREEN		
MBC Motor Speed 119.94 Hz	98.8°F	ABC Heatsink	Temperature
MBC Levitated Contact 🚬 🛛 🥹	136.6°F	Bearing Ten	operature
MBC Levitated 🥥 🥥 🔤	162.5°F	Bearing Ten	nperature
MBC Fault	118.4°F	l1 Bearing Te	mperature
MBC Config Status 112	126.5°F	12 Bearing Te	mperature
Radial Bearing U Th	ust Bearing H	Radial Be	earing K
Avg Pos 0.01 Mils: -0.10 Mils:	0.11 Mils	0.00 Mils	-0.05 Mils
Sync Orbit 0.14 Mils 0.14 Mils	0.00 Mils	0.74 Mils	0.78 Mils
Std Dev 0.11 Mils: 0.09 Mils	0.00 Mils	0.42 Mils	0.40 Mils
Peak Vibration 0.15 Mils	0.21 Mils	0.13	Mils
Avg Gap Change 0.19 Mils		0.56	Mils
Avg Force14.7 lbf285.9 lbf	-141.5 lbf	6.3 lbf	160.0 lbf
J1 7.3 A H1	4.9 A	K1 E	6.6 A
J2 5.5 A H2	7.4 A	K2 5	5.5 A
J3 7.6 A		K3 7	.3 A
J4 4.9 A		K4 5	5.0 A
MBC Command Levitate MBC Control Mode Levitated			


What happens during a power failure?

During a power failure


- An uninterruptable power supply (UPS) provides power to the bearings until rotation has stopped
- Additional backup bearings provide protection if power AND the UPS fail

MBC Motor Speed	119.94 Hz	98.8°F	MBC Heatsink	Temperature
MBC Levitated Contact	•	136.6°F	J Bearing Ten	operature
MBC Levitated	162.5°F	K.Bearing Temperature		
MBC Fault		118.4°F	H1 Bearing Te	mperature
MBC Config Status	112	126.5°F	H2 Bearing Te	mperature
	3-6		-	
Redial Bear	ing y 🔨 The	ust Bearing H	Radial Ba	raring K
Avg Pos 0.01 Mils: -0	.10 Mils	0.11 Mils	0.00 Mils	-0.05 Mils
Sync Orbit 0.14 Mils ().14 Mils	0.00 Mils	0.74 Mils	0.78 Mils
Std Dev 0.11 Mils: 0).09 Mils	0.00 Mils	0.42 Mils	0.40 Mils
Peak Vibration 0.15 M	ils 🕽 📥 🔤	0.21 Mils	0.13	Mils
Avg Gap Change0.19 M	ils	Entretheran	0.56	Mils
Avg Force14.7 lbf	285.9 lbf	-141.5 lbf	6.3 lbf	160.0 lbf
J1 7.3	A H1	4.9 A	K1	6.6 A
J25.5	A H2	7.4 A	K2	5.5 A
J37.6	and the second second second second		and the second	.3 A
J44.9	Α		K4	5.0 A
MBC Command	Levitate	1 Contraction		
MBC Control Mode	Levitated			


Normal Chiller Operation

Magnetic Bearing Comparison During Normal Chiller Conditions and Surge

Magnetic Bearings Provide a Wide Operating Range

The operating map can vary, please contact your local sales representative for project specific details

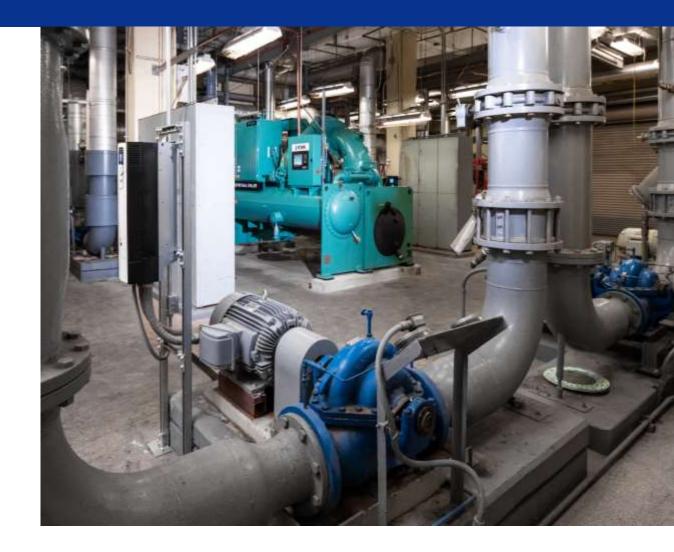
Case Study Site – University of Texas at Austin

About UT

- Opened its doors in 1838 and employs over 20,000 Staff and serves over 51,000 students.
- Despite incredible growth in both served pace and energy output, carbon emissions are equivalent to 1976 levels due to efficiency improvements in both demand at the buildings and supply at the power and chiller plants.

Pickle Research Campus

- Developed in 1949 to perform research in the areas of defense, high speed computing, nuclear physics, and space flight.
- Separate from main campus cooling loop.



Upgrading of Facilities

Cooling Tower System

Chiller

Controls

Upgrading Chiller System

Old System:

- 2 centrifugal chillers using R-11
- 600 tons and 200 tons
- Constant speed, oil-lubricated bearings
- Minimum entering condenser water temperature: 65°F

Upgraded System:

- 1 centrifugal chiller using R-1233zd
- 300 ton machine
- Variable speed drive, magnetic bearings
- Minimum entering condenser water temperature: 40°F

Upgraded System online May 2018

Magnetic bearing chiller installed in West Pickle Research Center mechanical room

Focus around Real World Performance

300 Ton Magnetic Bearing Chiller

- 12 foot shells
- Retrofit installation occurred in 1 piece
- Active filtered VSD to meet intent of IEEE
- Machine design to allow for wide operating map
- Improved performance at reduced load and lift

Data Collection:

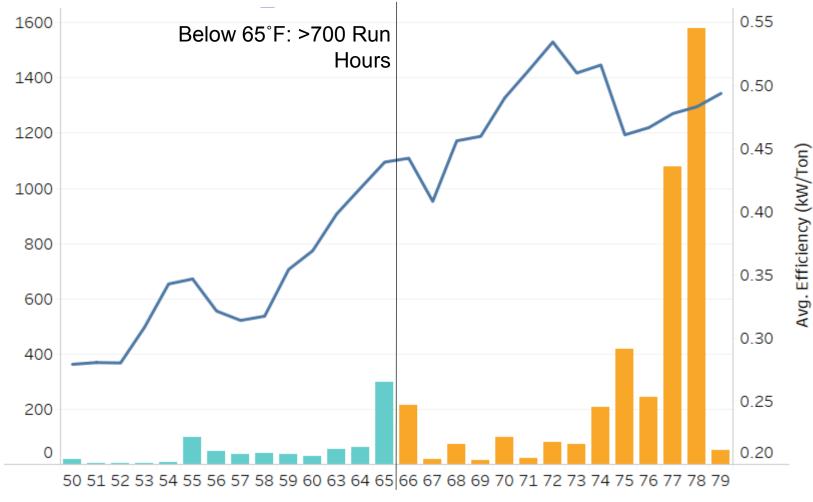
- Start-up in May
- Data collection in 15-minute intervals using UTA BAS system

	Partload Data (Minimum Condenser Water Temperature)									
CEFT (°F)	% LOAD									
	100%	90%	80%	70%	60%	50%	40%	30%	20%	10%
85.00°	0.5489	0.5399	0.5413	0.5519	0.5682	0.5937	0.6261	0.6991	0.8450	1.540
80.00°	0.4781	0.4692	0.4710	0.4808	0.4943	0.5125	0.5407	0.5968	0.7224	1.133
75.00°	0.4287	0.4219	0.4188	0.4189	0.4252	0.4349	0.4553	0.5024	0.6171	0.9221
70.00°	0.3821	0.3719	0.3608	0.3551	0.3542	0.3594	0.3742	0.4086	0.4994	0.7660
65.00°	0.3320	0.3184	0.3062	0.3004	0.2999	0.3033	0.3093	0.3313	0.3986	0.6584
60.00°	0.2855	0.2708	0.2594	0.2504	0.2470	0.2455	0.2492	0.2635	0.3004	0.5202
55.00°	0.2471	0.2299	0.2174	0.2068	0.2004	0.1998	0.2004	0.2070	0.2341	0.3774
50.00°	0.2069	0.1914	0.1762	0.1667	0.1587	0.1531	0.1495	0.1537	0.1742	0.2611
45.00°	0.1749	0.1612	0.1485	0.1335	0.1205	0.1070	0.1018	0.1152	0.1430	0.2306
44.00°	0.1717	0.1581	0.1456	0.1298	0.1149	0.1005	0.1032	0.1203	0.1505	0.2485
43.00°	0.1684	0.1550	0.1423	0.1251	0.1093	0.1013	0.1069	0.1254	0.1580	0.2666
42.00°	0.1635	0.1500	0.1358	0.1174	0.1072	0.1033	0.1078	0.1262	0.1587	0.2676
41.00°	0.1581	0.1446	0.1289	0.1143	0.1096	0.1056	0.1088	0.1269	0.1594	0.2686
40.00°	0.1523	0.1385	0.1252	0.1172	0.1121	0.1079	0.1099	0.1276	0.1601	0.2698
*Values	*Values are in kW/Ton									

Report generated in YW 19.00, color added for emphasis

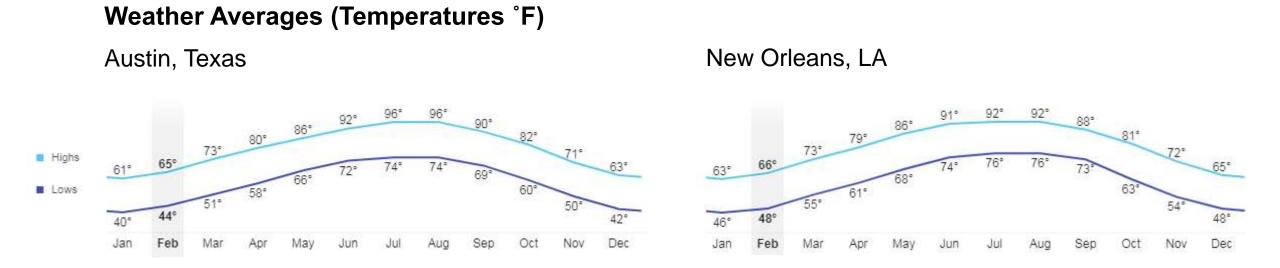
Design

Efficiency

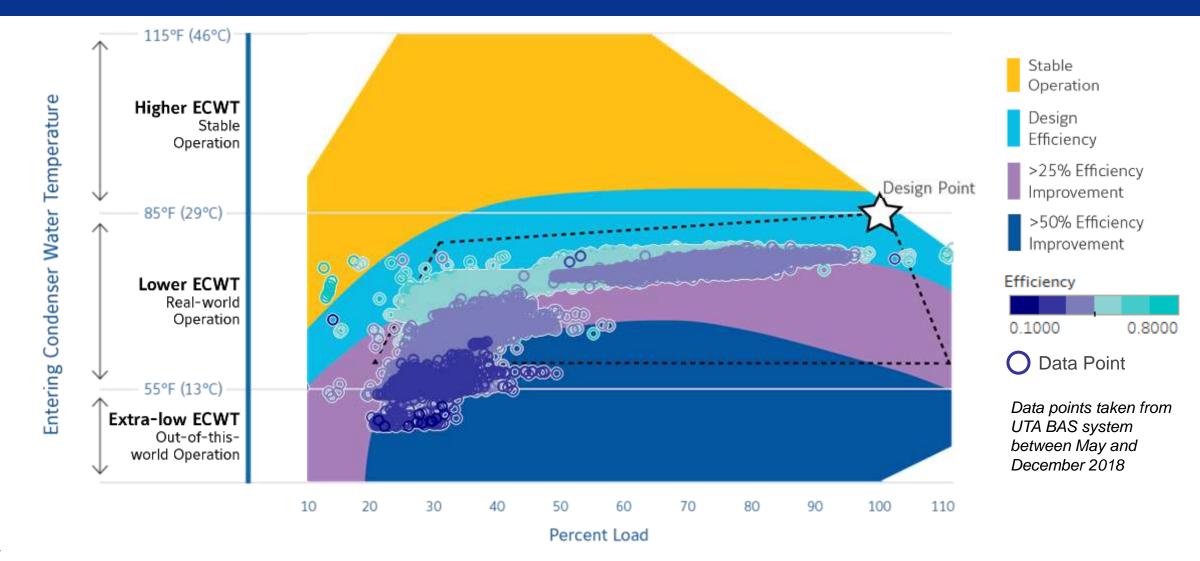

>25% Efficiency Improvement

Chiller Performance through Peak Season and Off-Design

- Cooling tower able to maintain
 ~80°F water temperature
- Average efficiency below 0.50 kW/Ton
 - Average on campus plant is
 0.67 kW/Ton including
 auxiliaries

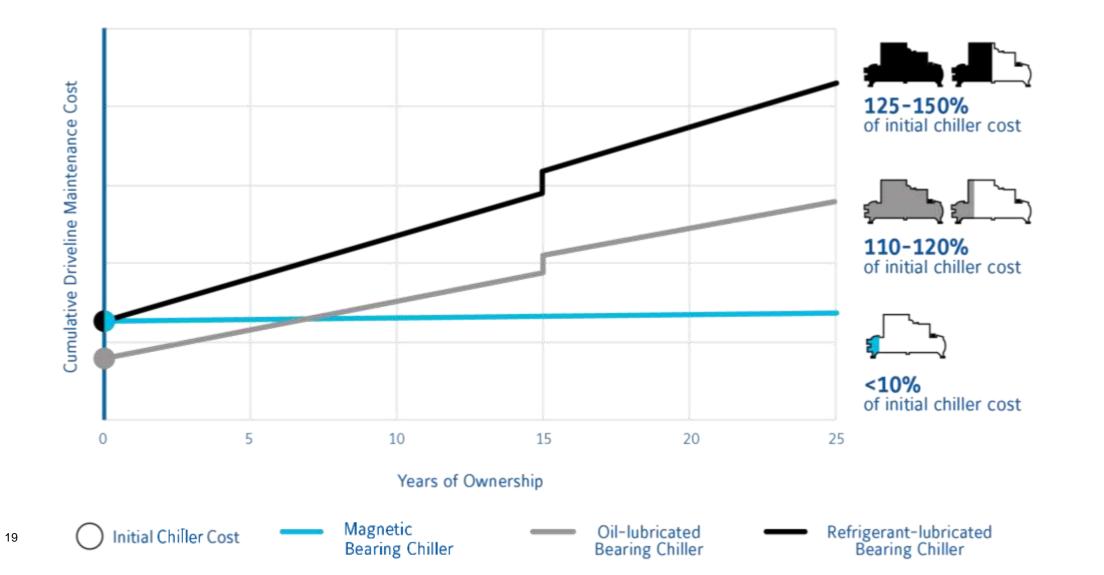

Run Hours

- Over 700 hours below 65°F water between September and December
 - Efficiency below 0.3 kW/Ton


Entering Condenser Water Temperature (°F)

Low tower water temperatures happen here too!

- Southern climates can still achieve cooler tower temperatures
- Lower tower temperatures allow the system to operate more efficiently


UTA is able to take advantage of off-design conditions

Other Magnetic Bearing Benefits: Lower Driveline Maintenance

Driveline Maintenance Tasks	Magnetic Bearings	Oil-Iubricated Bearings	Refrigerant-lubricated Bearings		
Check lubricant sump & temperature control operation	_	Monthly	Monthly		
Check lubrication eductors	_	Monthly	Monthly		
Lubricant analysis	_	Annually	Annually		
Replace lubricant filter(s)	_	Annually	Annually		
Vibration analysis	_	-	Quarterly		
Clean refrigerant pump strainer	_	-	Monthly		
Battery health test	Periodically	-	Periodically		

Other Magnetic Bearing Benefits: Lower Driveline Maintenance

Broad Offering to Meet a Variety of Project Needs

Magnetic Bearing Chillers Available 165 – 1,350 Tons

Johnson Controls Table #36

