

Energy Systems for Island Resilience Case Study : Guam

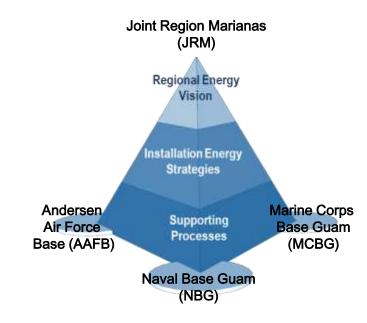
Avinash Srivastava, AICP Principal and Director of Urban Analytics Calum Thompson, PE, LEED AP High Performance Communities

Overview

- Integrated planning process focusing on resilience
 - Existing conditions and the need for resilience
 - Developing a resilient energy plan for Guam
- Methodology for assessment
 - Identifying critical loads
 - Methods of quantification and comparison of energy solutions
- Resultant plan
 - Technology integration
 - Phasing
 - Performance
 - Making Resiliency Investments Worthwhile
- Lessons learned and applicability elsewhere

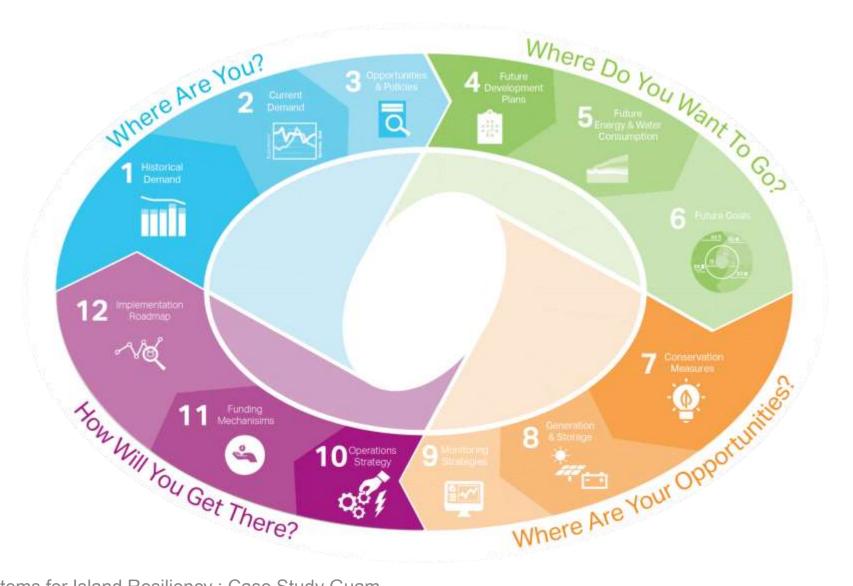
IDEA2018

Local Solutions, Global



Strategic Energy Master Plan

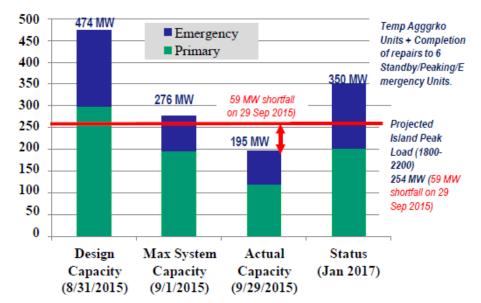
 The Strategic Energy Master Plan (SEMP) seeks to provide energy resiliency and security using efficiency, redundancy, and reliability in support of the forward operating mission.


MDIDEA2018

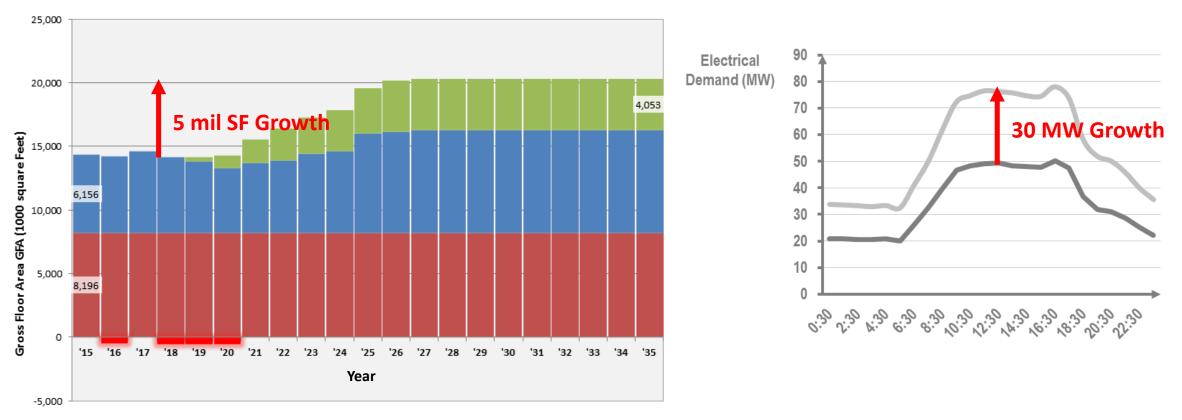
Local Solutions, Global Impact

Strategy Energy Planning

AECOM |Energy Systems for Island Resiliency : Case Study Guam


Existing Conditions: Power Crisis

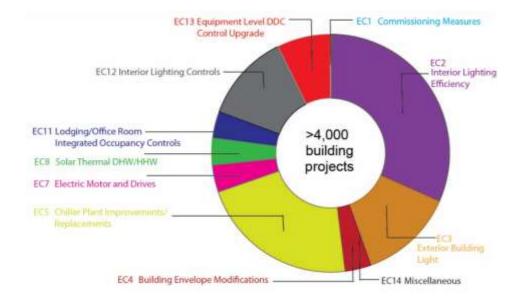
- GPA lost 80 MW generation
- JRM required to run on-site generation
- >400 power outages from 2010
 2015

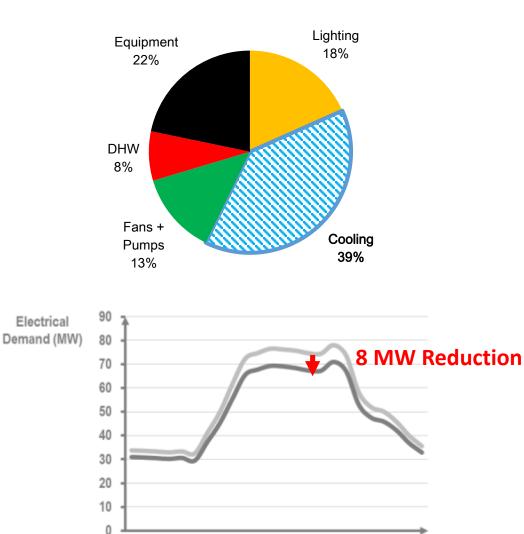


Future: Growth

Local Solutions, Global Impact

NBG AAFB MCBG Demo


Future: Goals



- Federal Mandates (EO 13693)
 - Energy Use Intensity (EUI) 25% reduction by 2025
 - Renewable Energy % 25% by 2025
- SECNAV Goals
 - 50% alternative fuel sources by 2020
 - Net zero energy by 2030
- Resilience Goals:
 - Provide durable energy solutions
 - Avoid single points-of-failure
 - Ensure sustainable maintenance
 - Use cost-effective energy strategies
 - Meet required energy mandates and goals

Strategies: Demand reduction

- Demand reduction 1st step
- Utility capacity constraint accentuates its resilience value
- >4,000 projects



6.3 2.3 k.3 6.3 6.3 6.3 2. 2. 2. k.3 k. 3 6.3 6.3 2. 3

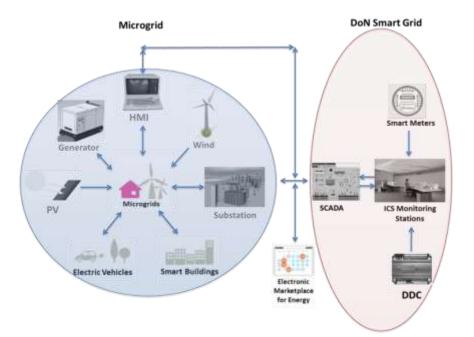
Strategies: District Cooling + SWAC

- District energy is key for reducing energy demand
- District Cooling
 - Centralized generation more efficient
 - Secondary maintenance benefits
- SWAC
 - Requires only approximately 20% of the electricity of conventional cooling (to power the pumps)
 - Numerous studies identified SWAC to be cost-effective at Guam

MDIDEA2018

🔚 🌄 Local Solutions, Global Impact

Strategies: Solar + Storage


- Number of sites suitable for PV
 - Up to 45 MW of rooftop solar
 - Adjacent land of solar farms
 - Off-site government land with directconnection opportunities
- Energy storage serves dual purpose
 - Load balancing to use PV energy
 - Demand management to reduce costs

Strategies: Microgrid

- Why Microgrids? Mission Assurance
- DoN has 2 overarching Shore Energy Goals:
 - Assure Energy Security for Critical Installation Operations
 - Maximize Availability of Renewable Energy
- Renewable energy systems require an energized electrical distribution to operate
- Microgrids allow renewable energy systems to support the mission during commercial power outages
- Microgrids deliver operational flexibility to sustain critical operations during extended outages

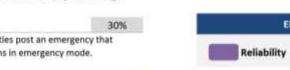
Local Solutions, Global Impact

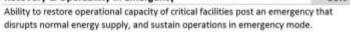
Methodology: Resilience Assessment

IDEA2018 Local Solutions, Global Impact

Critical Mission Energy Demand Component % of total annual energy demand for installation

30%


10%


30%

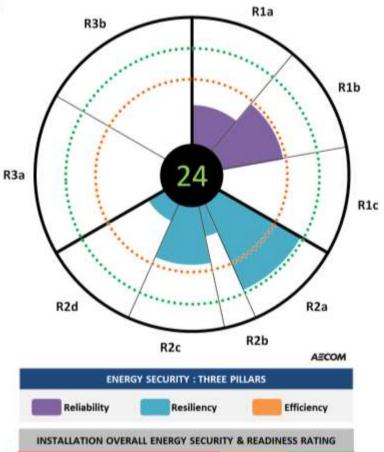
R1	Reliability								
	Reliability is concerned with the delivery of energy systems within acceptable regulatory standards and quality. It has 3 main metrics:								
R1a	Grid Reliability	33%							
	Reliability of energy distribution systems								
R1b	Smart Grid Capability	33%							
	Visibility and automation or operations								
R1c	Advanced Peak Demand/Power Management Capability	33%							
	Active load and power quality management								

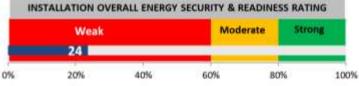
R2 Resiliency Resiliency is defined as the ability of Energy Systems to anticipate, resist, absorb, respond, adapt, and recover from a disturbance. It has 4 main metrics: R2a Redundancy & Availability Avoidance of Single Points of Failure (SPOF) in energy infrastructure and ensuring that there is adequate supply of energy in emergency situations. **R2b** Diversification Capability of receiving energy through a variety of sources in order to ensure stability in supply and pricing.

- **R2c Cyber Security & Hardening** 30% Mitigating risk from cyber attacks; hardening infrastructure from physical damage.
- R2d Recovery & Operability in Emergency

R3 Efficiency Efficiency contributes towards operational savings and reduction of loads that directly impact other resiliency and readiness aspects. It has 2 metrics:

R3a	Energy Efficiency	50%				
	Reduction in energy use intensity					
	Energy Operational Savings					
	Lifecycle reduction in energy utility bills and maintenance operations					

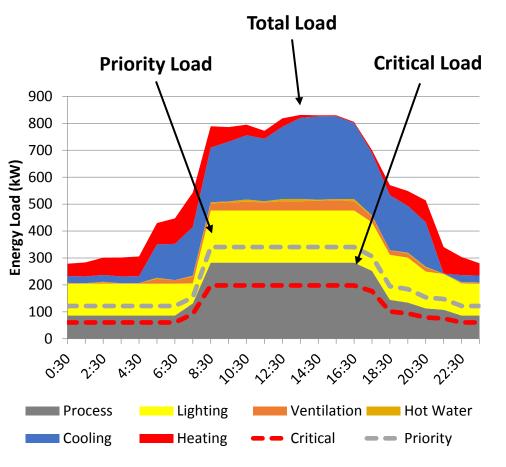



Energy Security

Resiliency

Efficiency

Reliability



13

Methodology: Identifying Critical Loads



- Within these critical facilities, the use of energy varies significantly
- Need to consider:
 - Operational times
 - Scale of demand
 - Type of demand
 - Process loads
 - Lighting systems
 - Heating, cooling and ventilation
 - Quality of supply
 - Role under critical operation
 - Ability to load-shed
 - Changing functionality

Methodology: Identifying Critical Loads

• A communications building has different demand than a training facility, armory, or airfield

Communications Facility

Recreational Facility

IDEA2018

Local Solutions, Global Impact

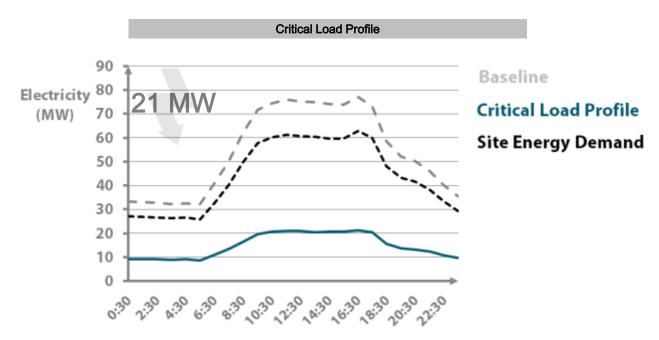
Methodology: Identifying Critical Loads

S1-4: Critical Load Profile

Critical Load

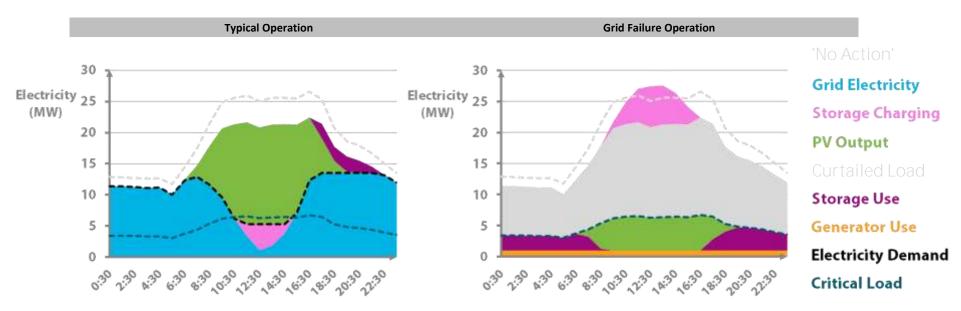
30% of the Annual Energy Demand

~350 MWh/day of Demand


Storage can help meet this demand

System Capacity

25 MW Generators


Cocal Solutions, Global Impact

OR ~350 MWh of Battery Storage

Methodology: Operational Configurations

- Design systems to maximize economic case
- Example is microgrid, solar and storage strategy at Guam

• Peak demand reductions allow system to pay for itself

🕄 🃂 Local Solutions, Global Impact

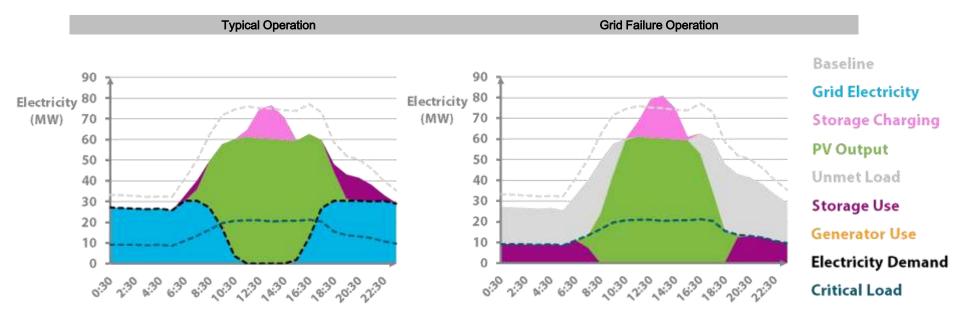
Storage: Peak Solar Day

Operation

Sized for critical supply resiliency

Peak Day Peak Output 80 MW

Solar with battery reduces peak demand by 50% under typical operation


System Capacity

110 MW PV

220 MWh Battery Storage

50 MWh used for peak shaving

15 MW Generators (0% needed)

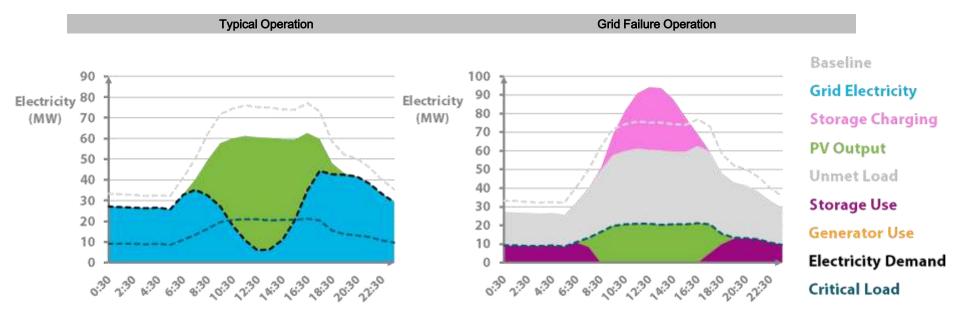
Storage: Average Day

Operation

Average Day Peak Panel Output 58 MW

45 MW grid demand during the day

All solar serves critical load


Does not require use of generators

System Capacity

110 MW PV

220 MWh Battery Storage

15 MW Generators (0% needed)

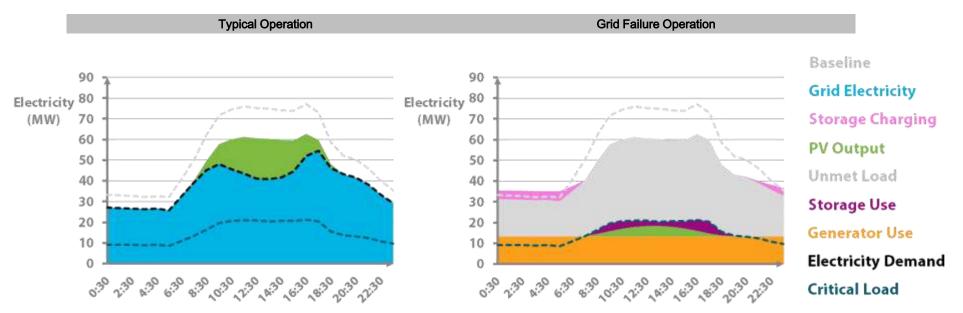
Storage: Minimum Day

Operation

Minimum Day Peak Output 3 MW

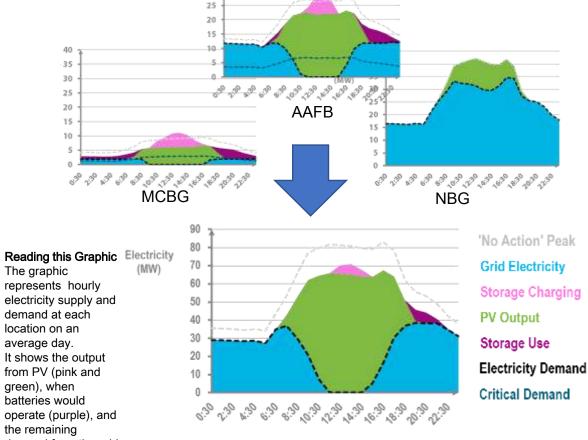
4 MW grid demand during the day

All solar serves critical load

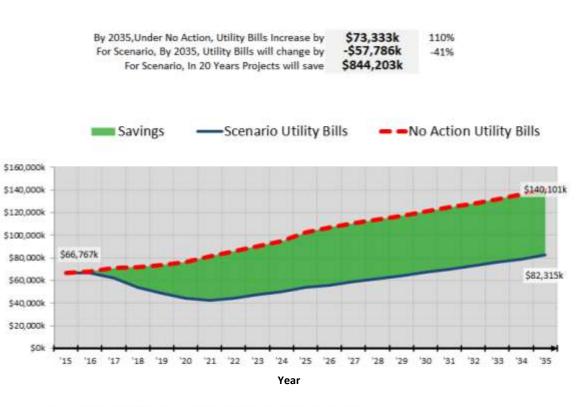

Requires additional generator operation

System Capacity

110 MW PV


220 MWh Battery Storage

3 MW Generators (50% needed)



40 35 30

The graphic represents hourly electricity supply and demand at each location on an average day. It shows the output from PV (pink and green), when batteries would operate (purple), and the remaining demand from the grid.

Typical Day Operation of a Future JRM

* Model 3 PV (Rooftop and Ground Mounted) contributes to utility savings

Results: Resilience

R1b

R1c

Strong 96

100%

AECOM

Critical Mission Energy Demand Component	30%	based on Microgrid			R1a	
% of total annual energy demand for installation		Studies	R3b			
R1 Reliability						
Reliability is concerned with the delivery of energy system regulatory standards and quality. It has 3 main metrics:	is within accepta	ble				
R1a Grid Reliability		33%	1 3	1000		
Reliability of energy distribution systems						4. I
R1b Smart Grid Capability		33%				
Visibility and automation or operations			1 1 1			
R1c Advanced Peak Demand/Power Management Capa	bility	33%				
Active load and power quality management		R3	a	96		
R2 Resiliency						
Resiliency is defined as the ability of Energy Systems to a respond, adapt, and recover from a disturbance. It has 4 r		absorb,			$\mathbf{>}$	
R2a Redundancy & Availability		30%			1.25	N
Avoidance of Single Points of Failure (SPOF) in energy infra there is adequate supply of energy in emergency situation		nsuring that				1
R2b Diversification		10%				/
Capability of receiving energy through a variety of sources supply and pricing.	s in order to ensu	ure stability in	R2d			R2a
R2c Cyber Security & Hardening		30%			R2b	
Mitigating risk from cyber attacks; hardening infrastructu	ire from physical	l damage.		R2c	n20	ABCO
R2d Recovery & Operability in Emergency		30%	EN	ERGY SECURITY : THR	EE PILLARS	
Ability to restore operational capacity of critical facilities p	oost an emergen	cy that				
disrupts normal energy supply, and sustain operations in	emergency mod	e.	Reliability	Resiliency		Efficiency
R3 Efficiency			INSTALLATION O	VERALL ENERGY SECUR	RITY & READINE	SS RATING
Efficiency contributes towards operational savings and rea	duction of loads	that directly				
impact other resiliency and readiness aspects. It has 2 me	strics:		Weak		Moderate	Strong
R3a Energy Efficiency		50%				96
Reduction in energy use intensity					1	
R3b Energy Operational Savings		50%	% 20%	40% 6	0% 8	0%
Lifecycle reduction in energy utility bills and maintenance	operations					

Results: Comparison

ain	IDEA 2018
	Local Solutions, Global Impact

JRM Energy Scenarios		Energy Security and Readiness Scorecard			EO 13693 Mandates*		CNIC Goal*	SECNAV Goals*		Cost Metrics					
Scenario Number	Scenario Description	Reliability	Resiliency	Efficiency	Energy Security and Readiness Scorecard Snapshot ⁵	Energy Intensity Reduction - 25% by 2025	Electric Renewable Energy - 30% by 2025	Renewables Mandate - 25% by 2025	Energy Consumption Reduction - 50% by 2020	Energy from Alternate Sources - 50% by 2020	Net-Zero (Utilizing Additional Sites ³) - 100% by 2030	Cost (\$M) ⁶	By 2035 Projects Will Save (\$M)	Cost \$ / MBTU Saved	Positive Cash Flow
1	Business as Usual + Government Planned Projects ¹	57	48	95		48%	84%	84%	26%	35%	28%	\$	\$\$	\$\$	14 Years (2029)
2	Mandate Compliance ¹	60	52	96		49%	100%	100%	26%	50%	44%	\$	\$\$	\$	13 Years (2028)
3	Resilient with Net-Zero MCBG ^{1,2,3}	100	87	100		62%	113%	113%	26%	54%	42%	\$\$	\$\$\$	\$\$\$	17 Years (2032)
4	Resilient Plus ^{1,2,3,4}	100	90	100		65%	138%	138%	26%	55%	66%	\$\$\$	\$\$\$	\$\$\$\$	22 Years (2037)

Notes:

Red Values indicate a Mandate or Goal is not being met.

Green Values indicate that a Mandate or Goal is being met or exceeded.

*Performance against mandates and goals is projected to target year and covers the full installation load.

0-59 Weak - needs improvement

60-79 Moderate - improved

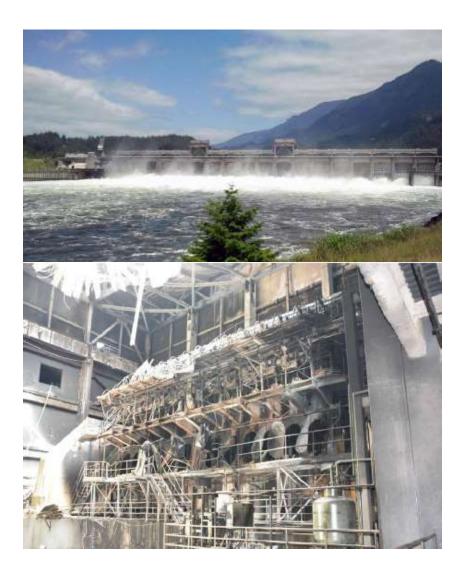
80-100 Strong - approaching the intent of guidance

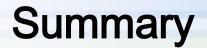
The Recommended Energy Scenario

Considerations Elsewhere

Climate Impact

- Alaska
 - Heating systems are critical
 - District heating & local boilers?
- Guam
 - Cooling is critical
 - District cooling and local chillers?
- San Diego
 - Could lose cooling / heating and be comfortable
 - Passive building design?




Considerations Elsewhere

Utility Grid Reliability / Power Quality

- Seattle
 - Very reliable grid
 - Reduced back-up power requirements?
- Guam
 - Unreliable, poor quality power supply (400 outages in last 5 years)
 - Increased need for on-site generation
 infrastructure

Calum Thompson : <u>calum.thompson@aecom.com</u> Avinash Srivastava: <u>avinash.srivastava@aecom.com</u>

AECOM |Energy Systems for Island Resiliency : Case Study Guam