

Understanding our Water Footprint: De-risking Operations

Ed Kirk, Johns Hopkins University

Jonathan Lanciani, Sustainable Water

Water Apocalypse

Only 5-10% of "drinking" water produced will be used for consumption.

http://www.virginiaplaces.org/watersheds/drinkwater.html

History of drought in region

Risks: Rates, Availability, Infrastructure, Environmental Pressure

Water: The Lynchpin to JHU's Way of Life

Solutions for a Range of End Users

Johns Hopkins University

Est. 1876

- 20 M GSF of Buildings
- 21 MW of CHP across 5 systems
- 50,000 tons of cooling and steam
- 320 M Gallons of water annually

Mission: Ensure JHU is sustainable and remains strong and vibrant

2009 JHU Task Force on Climate Change

- Possible to reduce GHG by 141,600 MT CO2e
- No one way to reach the goal.
- Business as Usual growth rate: 0.3% annually.
- Result = 51% reduction in GHG by 2025.

Figure 1.1: Reductions by Source

JHU Sustainability Efforts

Since 2008:

- Reduced GHG Emissions by 23% while the campuses have grown by 9%
- Sustainable Purchasing initiatives
- LEED certification on 12 buildings
- Waste diversion increased more than 50%
- Already conserving and treating stormwater

OCBS DE DE ANNO

LOCAL

Hopkins Commits To Go Local In Campus Food

November 24, 2013 2:58 PM

The Value of Sustainability Communications Strategies in Achieving Facilities Goals

By David Bookhart and Ed Kirk

X Then sustainability efforts were gaining ground on sional staff's time. From both sustainability and facilities viewpoints, waste

in concert with the plant operations staff to find ways of increasing building

But what about water?? Water use ROSE 9% in 2010

What's Been Done...

3 Cogeneration Plants (18MW)

 Increases Plant EE & Reduces carbon footprint

Trigeneration Plant (1.5MW)

85% better than grid electricity

Small CHP (75KW Modules)

Results:

- Displace High Carbon content grid electricity
- Capture & use waste heat

Energy Efficiency and the CHP at JHU

National Recognition

Hopkins will receive a portion of its energy from a 75 kW combined heat and power system (CHP), which will be owned and operated by American DG Energy. The university will receive a discount on the energy produced by the CHP system and reduce its carbon footprint.

Setting Standards for Efficiency and Reliability

\$ / 1,000 Gallons

Risks to Water

Maryland's Aging Infrastructure

\$13 billion Infrastructure Investment Needs Through 2030

Baltimore: Rates set to rise 11% over next 2 years

Risk Mitigation

Campus water objectives:

- Redundant Water Supply
 - Drought
 - Municipal infrastructure failures
- Additional On-Site Storage
- Flexibility & Resilience
- Independence
- Availability in the event of failure
- Minimum recovery time
- Insulation from rising water costs

N+1: Reliable and Safe Alternatives to Potable Water

Solution: Reuse Water A logical extension to conservation efforts JOHNS

Operational

- De-risks operations with an alternative water source
- Protects against mandatory conservation programs

Cost Savings

- Discounted water rates
- Reduced potable water intake
- Reduced sewer fees

Environmental & Social

- Decreases diversion of water from ecosystems
- Decreases wastewater discharge
- Net energy efficiency gains
- Reclaimed water shows no danger to public health

Eliminate Risks, Save Money and Increase Sustainability

Centralized vs. Decentralized Reuse

Water Treatment Facility

~10+ miles

Wastewater

Reclaimed Water

The Embodied Energy of Water

OPKINS

Impractical for Baltimore, MD

Overview

- Equipment inventory Water quality needs
- Program admin. Reclaimed water modeling

Water Footprint Assessment & Economic Validation

- Water balance & use WW flow projections
- Non-potable demand Economic assessment

Site & Infrastructure Assessment

- Infrastructure review Prelim. siting & design
 - Regulatory review • Lifecycle Savings

Validating Impact & Developing a Plan

Utility & Sewer Data

Predictable Demand

Some Independent Power Producers Currently Using Reclaimed Water ^J

Wheelabrator Technologies Inc.

Water Reuse is Prevalent Amongst IPPs

Utility Assessment

- Biological studies
- Corrosion studies
- Automation
- Treatability studies
- Equipment Integrity

- Feasibility and treatability studies
- Scale inhibitors
- Sludge dispersants
- Treatment specifications
- Purity studies
- Corrosion studies
- Fuel conservation studies

Superior Program Oversight: Unparalleled Collaboration

Flexible project financing arrangements utilizing: Performance Contracts ~ Operating Leases ~ Design-Build Agreements

Benefits \$12,000,000 No up-front capital \$10,000,000 Innovative Technologies Saving \$8,000,000 Leverages superior credit rating \$6,000,000 Cumulativ Immediate, Guaranteed \$4,000,000 Savings Long Term Pricing Stability \$2,000,000 No O&M Responsibilities **\$**-SW bares majority of risk **Yr** 1 Yr 5 Yr 10 Yr 15 Yr 20 **400K GPD ---**500K GPD 200K GPD **—**300K GPD

Water is Principal to Facility Operations

The WaterHub™

Student Engagement: Functional, but also a Living, Learning Classroom

Effluent Quality Footprint

Aesthetics

Water Reuse in Urban Spaces

Decentralization Creates New Dynamics: Safety, Aesthetics & Footprint

Complex, Adaptive Ecosystems JOHNS HOPKINS

Increased Biodiversity, Reduced Energy Requirements

Adaptive Ecological Solutions

QUESTIONS?

Ed Kirk (443) 997-2343 <u>ekirk3@jhu.edu</u>

Jonathan Lanciani (804) 965-5590 Jonathan.Lanciani@sustainablewater.com