Cornell University
AgriTech Campus in Geneva, NY

Electrical Master Planning, Substation, Distribution and Building Service Entrance Upgrades

Presented by:
Nik Terpak, PEng | CHA
Electrical Project Engineer – High Voltage Electrical Group
Agenda

- Campus Electrical Master Planning Process
- Cornell University AgriTech Case Study
- Substation Upgrades
- Distribution System Upgrades
- Building Service Entrance Upgrades
Campus Electrical Master Planning Process

Site Survey and Investigation

• Inspection of:
 • Main substation
 • Medium voltage distribution system
 • Building service entrances.

• Visual Inspection:
 • Equipment nameplate data age, condition
 • E-Room safety and code compliance.

• Equipment settings.
• Electrician experience and institutional system knowledge.
Campus Electrical Master Planning Process

Site Survey and Investigation

• Site Utility Survey
• Manhole Investigation:
 • Butterfly Diagrams
• Infrared Survey
• Hazardous Material Survey:
 • Asbestos, etc.
• Document Review:
 • Previous studies/engineering drawings.
 • Equipment drawings/manuals.
 • Maintenance records.
 • Historical metering data – load, PF, Harmonics.
Campus Electrical Master Planning Process

Site Survey and Investigation
Campus Electrical Master Planning Process
Analysis and Evaluation

• Power System Study:
 • Arc Flash.
 • Protection Coordination.
 • Short Circuit.
• System Condition Matrix:
 • Age, condition, system study.
• System Configuration Analysis:
 • Substation/Distribution loops, building Dual Feeds / Bus Tie’s.

• Electrical Room Conditions:
 • Code Compliance:
 • Working Clearance, Egress.
 • Grounding.
 • Mechanical Ventilation.
 • Fire Detection.
• Power Analysis:
 • Loading Analysis.
 • Power Factor Analysis.
 • Harmonics Analysis (if data available).
Campus Electrical Master Planning Process
Master Plan Report

- Power System Study.
- Arc Flash Stickers.
- Equipment Condition Matrices.
- Prioritized Improvement List:
 - Substation, Distribution, Buildings.
 - Equipment upgrades.
 - System re-configurations.
 - AF, coordination improvements.
- ROM Costs for improvements.
- High level schedule, based on resources.

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>Exposed Primary System</th>
<th>Primary Fuse Switch Age/Condition</th>
<th>Switch/Condition</th>
<th>Arc Flash Fault Level</th>
<th>Secondary Gear Duty Rating</th>
<th>Secondary Gear Age/Condition</th>
<th>TOTAL SCORE</th>
<th>RANK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weighting Factor</td>
<td>19</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td>15</td>
<td>15</td>
<td>61</td>
<td>11</td>
</tr>
<tr>
<td>Big 36</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>119</td>
</tr>
<tr>
<td>Big 34 A and B</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>157</td>
</tr>
<tr>
<td>Big 74</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>142</td>
</tr>
<tr>
<td>Big 74A</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>155</td>
</tr>
<tr>
<td>Big 4</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>213</td>
</tr>
<tr>
<td>Big 1</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>138</td>
</tr>
<tr>
<td>Big 5</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>140</td>
</tr>
<tr>
<td>Big 10</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>Big 10K</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>119</td>
</tr>
<tr>
<td>Big 35</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>185</td>
</tr>
<tr>
<td>Big 53</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>154</td>
</tr>
<tr>
<td>Big 56</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>138</td>
</tr>
<tr>
<td>Big 41</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>142</td>
</tr>
<tr>
<td>Big 39&40</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>172</td>
</tr>
</tbody>
</table>

Table X4 - Building Electrical Service Entrance System Condition Rating

<table>
<thead>
<tr>
<th>Exposed Primary System</th>
<th>N/A</th>
<th>Hazardous Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age/Condition</td>
<td>New</td>
<td>1-5 years</td>
</tr>
<tr>
<td></td>
<td>6-15 years</td>
<td>16-25 years</td>
</tr>
<tr>
<td></td>
<td>26-35 years</td>
<td>35+ years</td>
</tr>
<tr>
<td>Room Condition</td>
<td>N/A</td>
<td>very good condition</td>
</tr>
<tr>
<td></td>
<td>1 good condition</td>
<td>2 good condition</td>
</tr>
<tr>
<td></td>
<td>3 fair to questionable condition</td>
<td>4 poor condition</td>
</tr>
<tr>
<td></td>
<td>5 needs attention</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arc Flash Fault Level</th>
<th>N/A</th>
<th>NFPA 70E Hazard Cat 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary Gear Duty Rating</td>
<td>N/A</td>
<td>60 to 70%</td>
</tr>
<tr>
<td></td>
<td>70 to 80%</td>
<td>80 to 90%</td>
</tr>
<tr>
<td></td>
<td>90 to 100%</td>
<td>> 110% of Rating</td>
</tr>
</tbody>
</table>
Table X2 - Man Hole Condition Rating

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>Weighting Factor</th>
<th>Structural Integrity</th>
<th>Drainage System</th>
<th>Grounding</th>
<th>Racking System</th>
<th>TOTAL SCORE</th>
<th>RANK</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMH-1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td></td>
<td>29</td>
<td>12</td>
</tr>
<tr>
<td>EMH-2</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td></td>
<td>39</td>
<td>11</td>
</tr>
<tr>
<td>EMH-3L</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td></td>
<td>49</td>
<td>8</td>
</tr>
<tr>
<td>EMH-3S</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td></td>
<td>61</td>
<td>3</td>
</tr>
<tr>
<td>EMH-4</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td></td>
<td>51</td>
<td>7</td>
</tr>
<tr>
<td>EMH-5</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td></td>
<td>39</td>
<td>11</td>
</tr>
<tr>
<td>EMH-6</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td></td>
<td>51</td>
<td>7</td>
</tr>
<tr>
<td>EMH-7</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td></td>
<td>29</td>
<td>12</td>
</tr>
<tr>
<td>EMH-8S</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td></td>
<td>29</td>
<td>12</td>
</tr>
<tr>
<td>EMH-8L</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td></td>
<td>61</td>
<td>3</td>
</tr>
<tr>
<td>EMH-9</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td></td>
<td>51</td>
<td>7</td>
</tr>
<tr>
<td>EMH-10L</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td></td>
<td>58</td>
<td>5</td>
</tr>
<tr>
<td>EMH-10S</td>
<td>4</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td></td>
<td>49</td>
<td>8</td>
</tr>
<tr>
<td>EMH-11</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td></td>
<td>55</td>
<td>6</td>
</tr>
<tr>
<td>EMH-12</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td></td>
<td>51</td>
<td>7</td>
</tr>
<tr>
<td>EMH-12A</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td>88</td>
<td>1</td>
</tr>
<tr>
<td>EMH-12B</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td>88</td>
<td>1</td>
</tr>
<tr>
<td>EMH-13</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td></td>
<td>61</td>
<td>3</td>
</tr>
<tr>
<td>EMH-14</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
<td>42</td>
<td>10</td>
</tr>
<tr>
<td>EMH-15</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td></td>
<td>61</td>
<td>3</td>
</tr>
<tr>
<td>EMH-16</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td>45</td>
<td>9</td>
</tr>
<tr>
<td>EMH-17</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td></td>
<td>51</td>
<td>7</td>
</tr>
<tr>
<td>EMH-18</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td>45</td>
<td>9</td>
</tr>
<tr>
<td>EMH-19</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td>55</td>
<td>6</td>
</tr>
<tr>
<td>EMH-20</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td></td>
<td>71</td>
<td>2</td>
</tr>
<tr>
<td>EMH-21</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td></td>
<td>29</td>
<td>12</td>
</tr>
<tr>
<td>EMH-22</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td></td>
<td>45</td>
<td>9</td>
</tr>
<tr>
<td>EMH-23</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td></td>
<td>71</td>
<td>2</td>
</tr>
<tr>
<td>EMH-24</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td>27</td>
<td>13</td>
</tr>
</tbody>
</table>
Cornell University – AgriTech Campus

Campus Summary

- 8 nearby research farms, totaling 850 acres.
- 65,000 square feet of greenhouse space.
- Fruit and vegetable processing facilities
- Refrigerated and controlled atmosphere storage.
- 3MW Electrical Substation.
- 14 Buildings:
 - Research facilities, laboratory buildings and office space.
Cornell University – AgriTech Campus
Electrical System Summary

- **34.5kV Substation:**
 - 34.5kV overhead line switch
 - 34.5kV-4.8kV, 3MVA Transformer.
 - 4.8kV switchgear with 2 loop feeders.
 - Peak load of 1.5MVA.

- **4.8kV Distribution:**
 - Underground distribution loop of 500kcmil in concrete ductbanks.
 - Manhole 3-way junctions and splices to buildings.

- **14 MV building service entrances:**
 - Switches, transformers, LV (208 or 480V) gear.
Main Substation Assessment

- Equipment age of ~50 years, past expected life.
- 34.5kV switch marked ‘Do Not Operate’, manufacturer instruction.
- Transformer:
 - On-load tap changer (OLTC):
 - Monitored change counter.
 - Infrared identified some radiator blockages.
 - ~40% peak loaded.
- 4.8kV switchgear:
 - Old electro-mechanical relays – lack of coordination.
 - One breaker unable to electrically switch.
Main Substation
Recommendations

- Replace all major equipment and cable.
- Slightly Downsized Transformer.
- Maintain OLTC.
- Replace 4.8kV switchgear with SF6 relay-managed pad-mount switch.
- Install in empty substation space, to minimize construction outage.
Medium Voltage Distribution
Assessment

- Manhole and Conduit evaluation:
 - ~40% of ductbank was found to be compromised (not useable).
 - One manhole found to be structurally concerning (old, brick).

- 4.8kV System Considerations:
 - Capacity vs. Cable Size vs. Conduit fill.
 - Vs. 4.16kV system – high TX replacement costs.

- Cable/Switch evaluation:
 - Majority of cable is ~50 years old, past its expected life: Experienced failures 2011.
 - Manhole junction configuration and one mid-way loop switch:
 - Lack of selective switching and increased outage impact.
 - Poor access, operability of manhole junctions.
 - Unsafe mid-point switch
Medium Voltage Distribution

Recommendations

• Replace all old cable (50 years old).
• Install new ductbank, as needed, to abandoned compromised ductbank sections.
• Install strategically placed pad-mounted loop switches to allow for more selective switching and reduce the impact of outages.
• Install pad-mounted junction boxes to provide easier access to remove building junctions during switching.
• Construction phasing switching orders:
 – Configured to replace all cable with five ~4h building outages.
Medium Voltage Distribution

Recommendations
Building Service Entrance Upgrades

Assessment

- 85% of building entrances ~50 years old, past design life.
- 30% of buildings had ‘extreme danger’ arc flash conditions.
- Areas of unsafe equipment or conditions:
 - Manufacturer ‘Do Not Operate’ direction.
 - Exposed fuse cutouts in E-Room.
Building Service Entrance Upgrades

Recommendations

- All services past their design life should be upgraded.
- Priority list of building upgrades produced.
- Top 5 priority buildings included arc flash safety hazards or unsafe equipment conditions.
- Recommended to perform 5 top priority upgrades in one construction package:
 - New MV switch, MV transformer and LV switchgear.
- Construction phasing plans (staged demo/install) produced to install in parallel and use temporary generators to keep all outages to >8h.
Building Service Entrance Upgrades

Recommendations
Completed Upgrades

Main Substation
• All equipment and cabling replaced, per recommendations.
• All old equipment removed.

Distribution
• New ductbank installed and all old cable replaced.
• New pad-mounted switches and junction boxes installed, per recommendations.
• All old cable removed.

Building Service Entrances
• Upgrades to be completed in 2020 for 5 highest priority buildings.
Completed Upgrades
Cornell University
AgriTech Campus in Geneva, NY

Electrical Master Planning, Substation, Distribution and Building Service Entrance Upgrades

Thank you