

A New Approach to Solve Resiliency, Efficiency and Sustainability Challenges Chris Dunlap, Power Generation BDM, Americas

Confidential Property of Schneider Electric

Energy Megatrends – Creating New Energy Landscape

More ELECTRIC

2X faster growth of electricity demand compared to energy demand by 2040

Source : IEA WEO 2014

DIGITIZATION

10X more incremental connected devices than connected people by 2020

Source : Cisco, Internet World Statistics

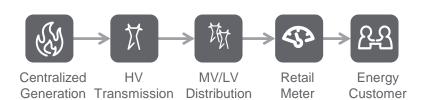
DECARBONIZATION 82% of the economic potential of energy efficiency in buildings and more than half in industry, remains untapped

Source : World Energy Outlook 2012, Internal Analysis

DECENTRALIZATION 70% of new capacity additions will be in Renewables by 2040

Source : BNEF

Energy Megatrends – Creating the New Energy Landscape

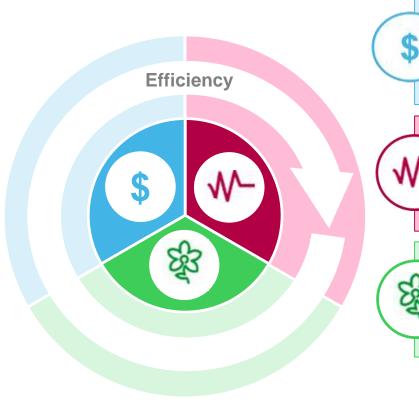

Decarbonization

Digitization

Decentralization

+ More Energy

Historical Energy Value Chain


The New Energy Landscape

- Utilities house significant Grid-Connected 3rd party owned Solar PV plants with complementing BESSs. In some cases the developer is the utility, but in others it is a 3rd party or a new "Prosumer".
- Larger Prosumers and Municipalities use PPA and ESCO/IPP PPA/Lease models to leverage existing and build new DERs
- Reduction in costs for DER technologies, increase in reliable delivery + new business models for Energy Services result in the new Energy Landscape
 Life Is On

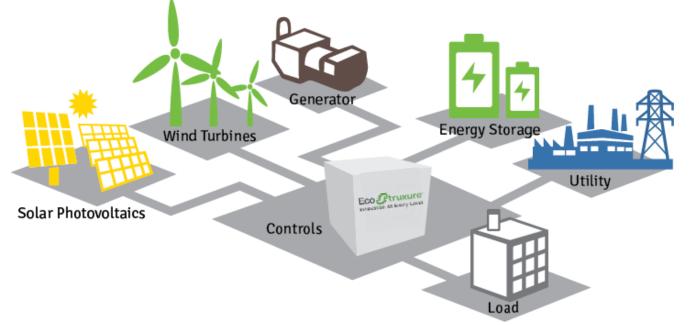
What New Energy "Prosumers" are looking for

Cost

- Lower / More Predictable Energy Costs
- Energy / Fuel Source Arbitrage
- Flexibility drives savings / incremental revenue

Resilience

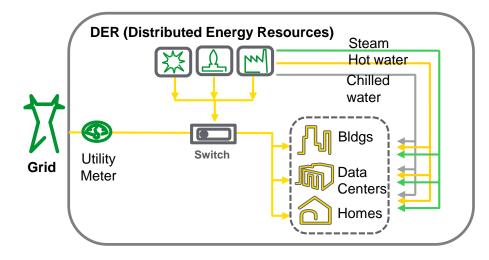
- Serve loads during times of grid instability
- Oasis for employees / customers shelter in place
- Protect power sensitive / critical assets from poor power quality


Sustainability

- Reduce carbon footprint
- Improve brand image
- Attract / Service carbon sensitive customers

What is a Microgrid?

An integrated energy system consisting of interconnected loads and distributed energy resources...



...which as an integrated system can be controlled as a single entity and operate in parallel with the grid or in an intentional *islanded* mode.

Combined Heat and Power & Microgrids

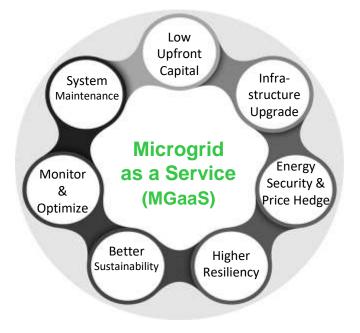
CHP provides superior reliability, meeting a site's thermal needs in addition to its electrical needs, round-the-clock, even in the event of a grid outage.

- Steam, hot water and chilled water is produced at District Energy Centers
- Environmentally Sound
- Individual buildings do not need their own chillers/ boilers
- > Easy to operate and maintain
- Comfortable and Convenient
- Provides Architectural Flexibility

Business and Delivery Models: EPC to "Microgrid-as-a-Service"

CAPEX (or EPC) Business Model

OPEX (As a Service or PPA/Lease) Business Model


Microgrid-as-a-Service or Energy-as-a-Service

As-A-Service Model

You pay for energy Demand charges eliminated Net Savings

Microgrid-as-a-Service Case Study Montgomery County, MD

•Project Cost: \$16M

- •(SE \$6M, Duke Energy Renewables \$10M);
- •SE 25 year service contract \$2.25M

•Client Requirements:

- Deliver Two Advanced Microgrids
- Increase resiliency and sustainability at Public Safety HQ and Correctional Facilities
- Incorporate solar and CHP into off-grid operation
- Deliver via MGaaS model eliminating host upfront costs

•Details:

- Include clean on-site power generation through solar energy systems and natural gas generators
- Schneider to play comprehensive role designing & implementing solution
- Project includes protection control & optimization, electrical equipment, DER management, electrical design services, cybersecurity and network design.

Microgrid-as-a-Service Case Study SE NAM Boston One Campus

Situation

- Boston One Campus is the North American headquarters of Schneider Electric.
- Constructed in 2014, 240,000+ sqft.
- +750 employees
- 1 of 5 global R&D centers
- Sustainability
 - SE has a public commitment to be carbon neutral by 2020
 - North America represents 31% of Schneider Electric's global emissions
- Resiliency
 - Site was averaging >3 outages per year with significant impact on R&D

Approach

- Implemented Microgrid as a Service contract with an equity partner
- Added 465kW of Solar
- Microgrid controls allow operating solar in parallel with backup gas generator when isolated from the grid
- Upgraded electrical infrastructure to support better resiliency

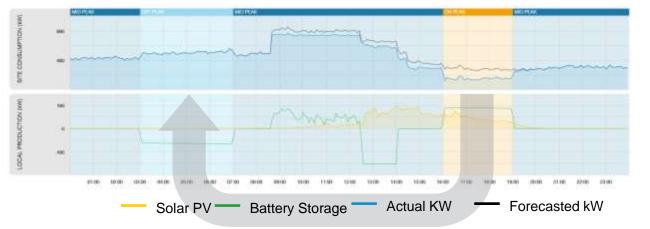
Outcomes

- Reduced energy price by >10% from green tariff offered by utility
- Energy price is fixed for 13 years
- Improved resiliency site now capable of providing energy to all critical assets during outage.
- Improved carbon footprint solar capable of providing 50% of site load.
- Shelter in Place provide a safe haven for employees during storms
- Solar canopies provide covered parking for employees, more EV charging parking spaces, and increased security through installed cameras and lights.
- Brand value: Solar canopies now the defining external feature at our facility.
- No Capital Outlay Life Is On

Prosumers have varying degrees of supply and demand flexibility

The more flexibility the better the optimization

Lights and Motors Grid and Solar

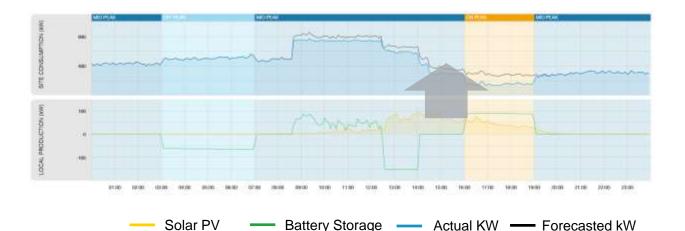

Lights and EV Charging Grid, Solar and Storage

Lights and EV Charging, HVAC and Cold Chain Grid, CHP, Solar and Storage

Peak Electric or Gas Pricing – Tariff Optimization

Shift consumption from times of high cost to times of low cost

Source: Oncor – May 27, 2015

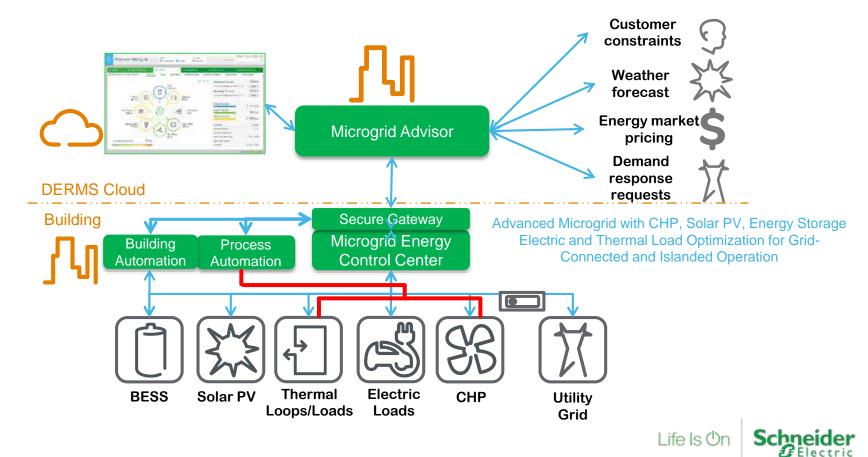

Life Is (

Mixed Use Case at the Prosumer Microgrid

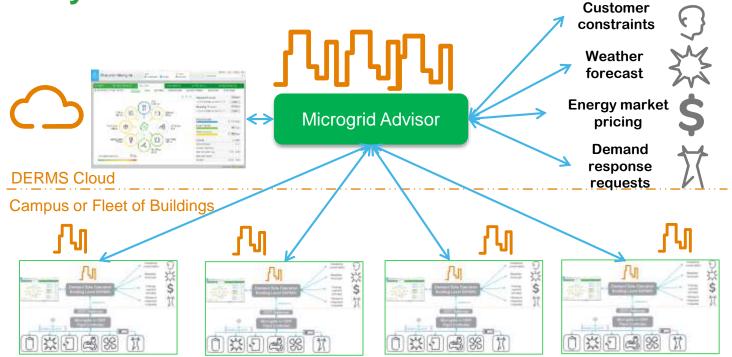
- Prosumer optimization of battery charge, discharge and peak shaving
- However a utility demand response (DR) event may "interrupt" prosumer operation and execute based on what utility wants.
- Algorithm abandons Peak Shaving, and must recharge to prepare for DR event. We have left the Prosumer benefit and shifted to the Utility benefit.

Demand Limit Management – Peak Shaving

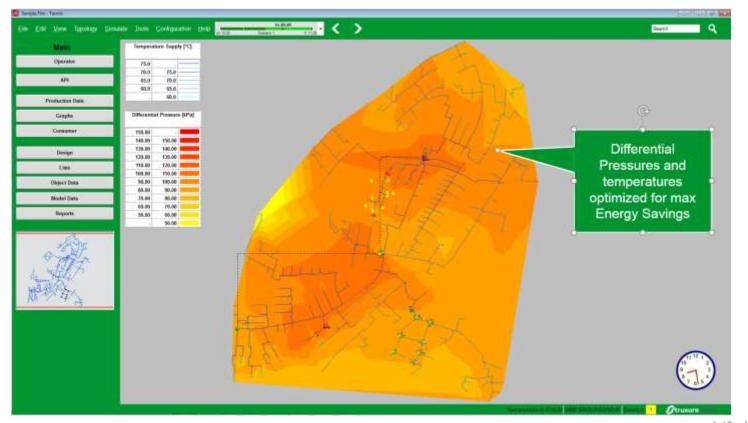
Minimize / avoid fees by shaving peak demand



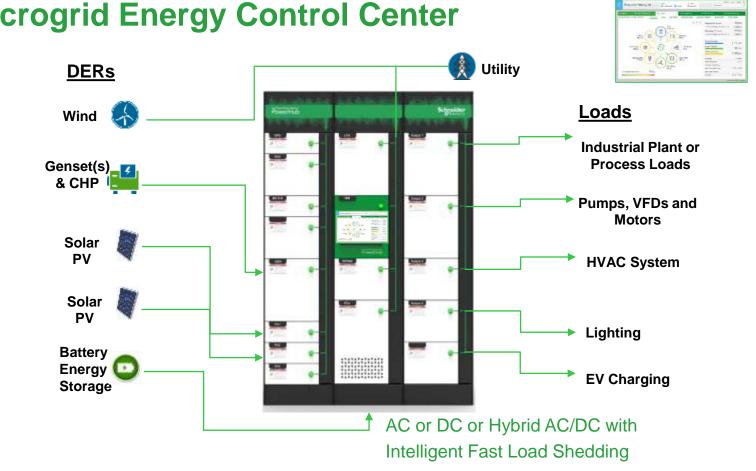
Source: Oncor – May 27, 2015


- *Example 1:* Dispatch energy storage to supply some load to avoid a peak
- *Example 2:* Shed loads (HVAC, EV Chargers, etc.) to avoid setting a peak
- Example 3: Sequence the start of large loads to avoid coincident peak demand

Microgrid Architecture – Building or Facility



Microgrid Architecture – City, Complex, Campus or Facility Fleet



Termis Software: CHP/District Heating and Cooling Optimization

Life Is On

Microgrid Energy Control Center

Life Is Or

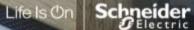
EcoStruxure Battery Energy Storage System - NEW

Configuration	125kW/250kWh	250kW/500kWh	500kW/1MWh	1MW/2MWh
Power Cabinets	1	1	1	2
Battery Cabinets	2	3	6	11
Power Cabinet Est. Weight - kg	400	500	700	1400
Battery Cabinet Est. Weight - kg	2990	5850	11700	21450
BESS Est. Weight - kg	3390	6350	12400	22850
Est. SQ. FT	37.5 (3 x 2.5'x 5')	50 (4 x 2.5' x 5')	87.5 (7 x 2.5' x 5')	162.5 (13 x 2.5' x 5')

Life Is On

Note: If bumpless "UPS quality" BESS is needed, we have Galaxy VM series Used on 60%+ of datacenters globally.

Closing Thoughts


- A New Energy Landscape is here be ready !
- Microgrid-as-a-Service is real: Maximum benefits with little/no capital outlay
- > Energy Optimization requires integrated electrical and thermal (CHP) systems
- > Dynamic Microgrid operation needed to achieve optimal:
 - Resiliency
 - Efficiency
 - Sustainability

Questions? Thank you !

FGHIJK LMNOP QRSTU

> Chris Dunlap Cell: +1 (978)269-7120 Christian.Dunlap@schneider-electric.com

