Prospect Park: Integration of Community Energy Systems

Purpose

- Illustrate the potential of integrated energy systems at a community development scale
- Share the importance of multi-stakeholder collaboration
- Outline the benefit of integrating energy between new and existing district systems

Project Background

Twin Cities Metro District Systems

Energy Island – 2012 DOE Study

Systems in Project Area

Prospect Park 2020

- Community comprehensive planning
- Driven by local community leaders (residents and business)
- Development of "Green Fourth Street"

Initial Feasibility Analysis

Multiple infrastructure stakeholders brought to the table

- Prospect Park 2020
- University of Minnesota
- Met Council
- City of Minneapolis
 - Community Planning & Economic Development
 - Public Works
- Hennepin County
- The Wall Companies

- Metro CERTS (clean energy resource teams)
- Mississippi Watershed Management Organization
- Cunningham Architects
- The Cornerstone Group
- Local gas and electric utilities

Sustainable Guidelines and Standards

- Solid waste
- Water and wastewater
- Stormwater and groundwater
- Solid waste
- Food
- Transportation
- Energy

Land Use Map

Proposed Land Use

New Buildings, Businesses and Increased Density

Project Approach

Integrated Community Energy Systems

Benefits of an Integrated Approach

- Increase energy efficiency, reduce primary energy consumption and associated GHG emissions
- Enable beneficial use of surplus thermal energy from dispersed sources
- Ease transition to use of renewable energy
- Enables energy storage and smoothing of energy peaks
- Achieve significant energy conservation and GHG emissions reductions using currently available technology

Integration

- combined heat and power
- waste heat recovery
- biogas (local brewery)
- hot water storage
- solar thermal
- snowmelt systems
- traditional gas-fired boilers
- chilled water storage with adsorption or absorption cooling
- free cooling
- solar cooling
- traditional electric driven chillers.

Project Goals

- Smart infrastructure
- Fuel flexibility and renewable alternatives
- Local resources for local needs
- Technology innovations
- Overall system or multi-system efficiency
- Long-term energy price stability

Prospect Park System Vision Map

District Energy Systems

Phase 1 Implementation Plan

- Coordinate distribution network with plans for street improvements
- Implementation timed with initial build-out
- Traditional technologies for initial energy generation
- Design infrastructure to easily integrate into the long-term system vision
- Utilize stranded low-grade heat for snowmelt

Phase 1 Load Potential

Square Footage		Heating		Cooling	
				_	
		MMBtu	MMBtu/hr	Tons	Ton-hrs
Commercial/Retail	150,000	5,535	3.26	180	162,000
Office	150,000	5,760	3.39	345	310,500
Residential	1,360,000	45,560	26.78	1,360	1,224,000
Arts Center	50,000	2,120	1.25	60	54,000
Research	250,000	10,600	6.24	575	517,500
Residential	160,000	5,360	3.15	160	144,000
Total	2,120,000	74,935	44	2,680	2,412,000

Phase 1 Distribution

Green Line LRT

Phase 1 Distribution

Hot Water Distribution

	Trench Feet
Main Lines	4,000
Service Lines	750
Grand Total	4,750

Chilled Water Distribution

	Trench Feet
Main Lines	4,000
Service Lines	750
Grand Total	4,750

Phase 1 Production Central Plant

Phase 1 Challenges

- Early acceptance from initial developers
- Local community group participation
- Initial infrastructure cost
- Existing energy sources
- Local system champion

Current Status

- Collaborative partnership formed
- Subject matter groups assigned to core objectives
- District energy design integration discussions with initial property developers
- Seeking funding for implementation phases

Conclusions

- Development of a new district energy requires a local system champion
- Optimize integration with existing energy sources and existing infrastructure
- Leverage connections to nearby energy systems
- Coordinate with infrastructure improvements
- Start small, but plan for the system vision
- Develop systems with a multi-faceted stakeholder group, including public and private participants

Questions?

Michael Ahern Senior Vice President, Project Development michael.ahern@ever-greenenergy.com

