De-Carbonizing the Campus: Planning, Tools & Technologies

CampusEnergy2023

February 27 – March 2, 2023

Utilizing Energy Performance Contracting (EPC) as a Campus De-Carbonization Tool

Robert Roman – University of Illinois at Urbana-Champaign Sylvia McIvor - Veregy

Energy Performance Contracts (EPCs)

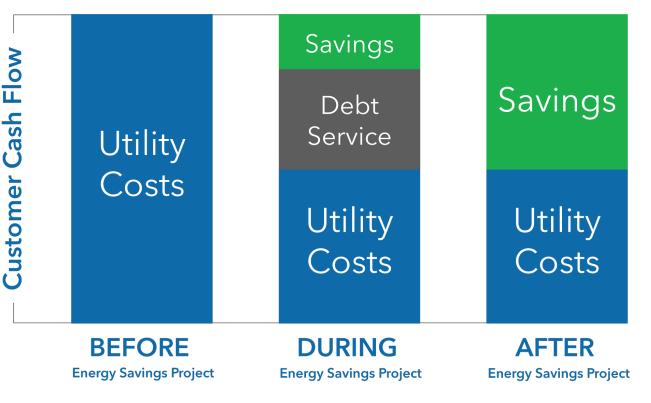
 _	
1	

Design/build project with a performance guarantee

Turnkey solution

Delivers comprehensive utility savings

Third-party financing (optional)



Single contract with Energy Services Company (ESCO)

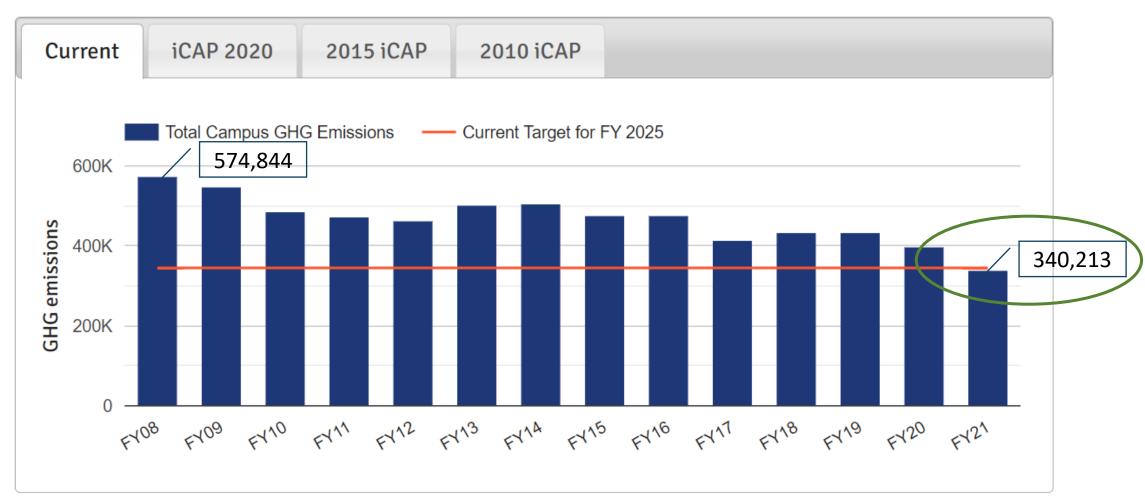
Project savings pay project costs

The Illinois Climate Action Plan (iCAP) – A Path to Campus De-Carbonization

Outlines the Vision and Goals to Meet the University's Commitment to Achieve Carbon Neutrality by 2050

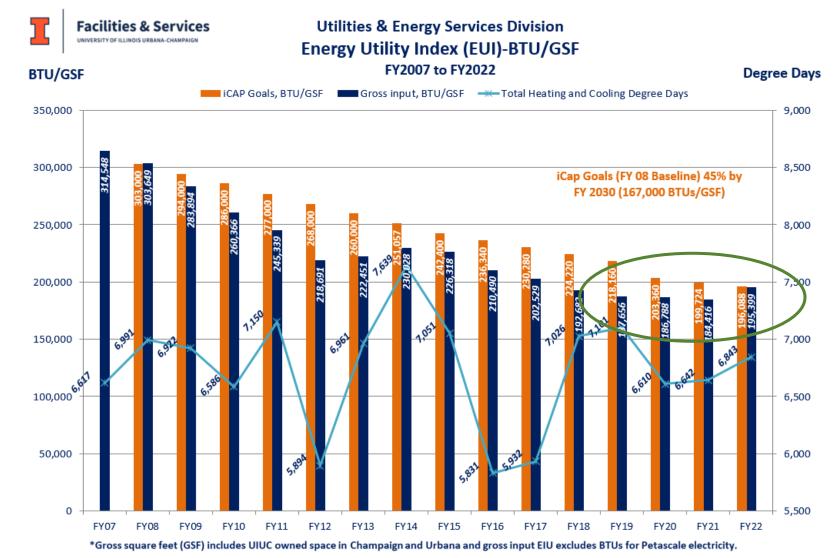
- Updated every 5 years (last update in 2020)
- 60% Energy Reduction by 2050 (from 2008 baseline)

Energy Management Plan (EMP)

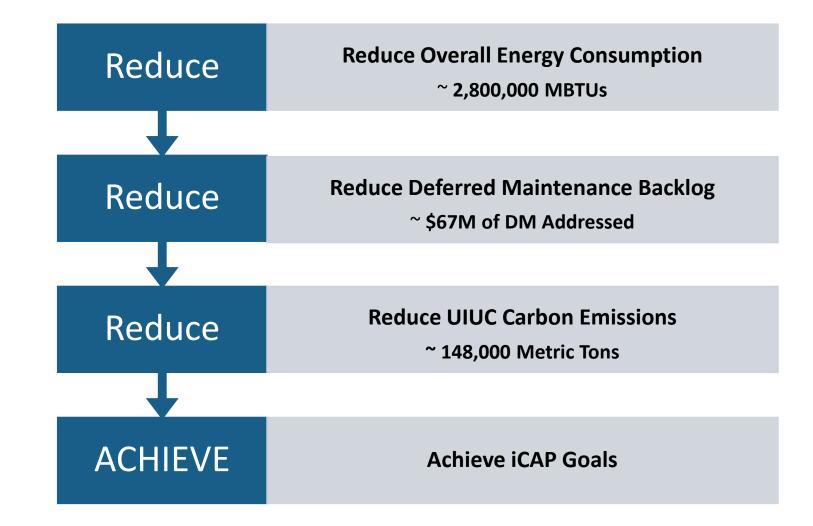

- •Retro-commissioning
- Re-commissioning
- •Capital Projects
- •Energy Performance Contracts (EPC)

De-Carbonizing the Campus: Planning, Tools & Technologies CampusEnergy2023 February 27 – March 2, 2023

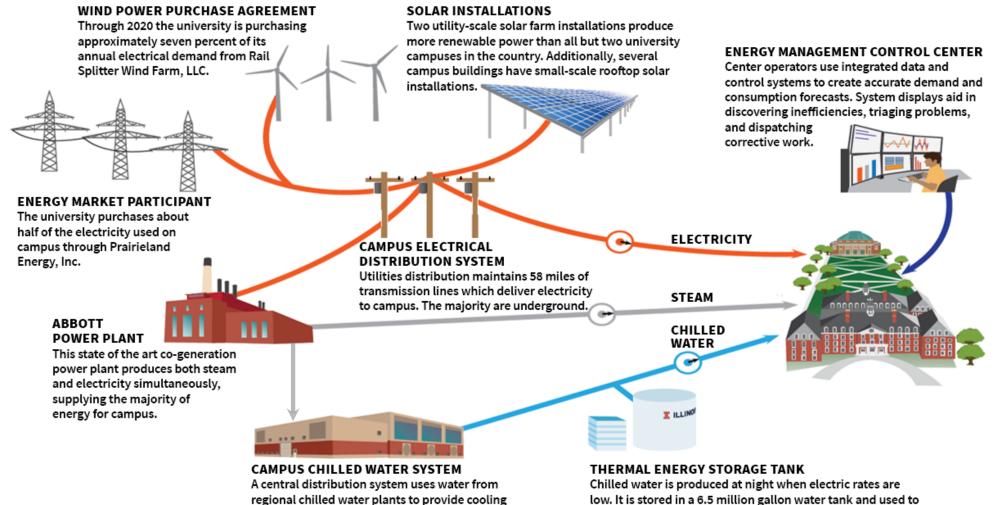
2025 GHG Goal – 344,906

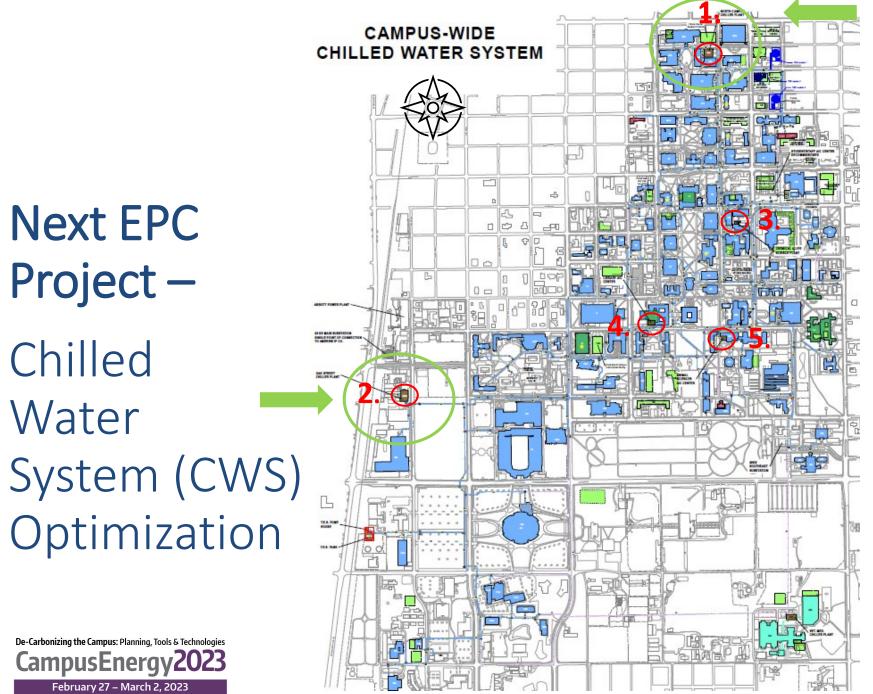

Total Campus GHG Emissions

2030 BTU/SF Goal – 167,000


UIUC EPC Project Summary – Past 10 Years

(Amounts in Thousands)									
	EPC01	EP	C02 Oak				EPC04	EPC05	
	VetMed	St	. Chiller	E	PC03	Ab	bott Int	Lab	
Project Budget by Fund Source	Ctr		Plant	Enį	g Bldgs	(Cooler	Facilities	Totals
Fiscal Year Completed/Expected	2013		2013		2020		2018	2023	
UES Contribution existing funds		\$	10,731	\$	478	\$	2,062		\$ 13,271
UES Contribution \$40M borrow				\$2	20,171			\$ 14,980	\$ 35,151
Def. Maint. (AFMFA, UA, Provost)				\$ 3	15,817			\$ 9,617	\$ 25,434
Matching (Provost/Dept./Grant)				\$	4,103			\$ 8,000	\$ 12,103
External Borrow	\$ 21,262								\$ 21,262
Total Project Budget	\$ 21,262	\$	10,731	\$4	40,570	\$	2,062	\$ 32,597	\$ 107,222
First Year Energy Cost Avoidance	\$ 1,400	\$	1,900	\$	1,400	\$	210	\$ 2,000	\$ 6,910
20 Year Energy Cost Avoidance	\$ 44,000	\$	60,000	\$4	42,000	\$	5,000	\$ 55,000	\$ 206,000
Def. Maint. Addressed (Est.)	\$ 25,000	\$	-	\$:	15,000	\$	-	\$ 27,000	\$ 67,000


UIUC – EPC Project Goals & Progress to Date


The UIUC Energy Enterprise

low. It is stored in a 6.5 million gallon water tank and used to provide cooling during the day when electricity rates are high.

- 1. North Campus
- 2. Oak Street
- 3. Chem Life
- 4. Library
- 5. Animal Sciences

Chiller Plant	Chiller Type	Installed or Rated Capacity (Tons)	2022 Usable Capacity	
Oak Street Chiller Plant (OSCP)	Electric Centrifugal & Steam Turbine Centrifugal	27,630	20,630	
North Campus Chiller Plant (NCCP)	Electric Centrifugal	9,500	8,250	
Library Air Conditioning Center (LACC)	Electric Centrifugal	3,200	3,200	
Animal Sciences Chiller Plant (ASCP)	Electric Centrifugal	2,100	2,100	
Chemical/Life Science Chiller Plant (CLSCP)	Electric Centrifugal	3,030	1,906	
Subtotal Main Campus Chilled Water Plant Capacity		45,460	36,086	

Built in 2004

Oak Street Chiller Plant	Machine Type	Capacity
Chiller 1	Steam Turbine Centrifugal	5000 ton
Chiller 2	Steam Turbine Centrifugal	5000 ton
Chiller 3	Electric Centrifugal	2000 ton
Chiller 4	Electric Centrifugal	2200 ton
Chiller 5	Electric Centrifugal	<u>5000 ton</u>
Chiller 6	Electric Centrifugal	2798 ton
Chiller 7	Electric Centrifugal	5600 ton
		27598 ton

Built in 1998

North Campus Chiller Plant

Chiller 1	Electric Centrifugal	1200 ton
Chiller 2	Electric Centrifugal	1000 ton
Chiller 3	Electric Centrifugal	1000 ton
Chiller 4	Electric Centrifugal	2000 ton
Chiller 5	Electric Centrifugal	1000 ton
Chiller 6	Electric Centrifugal	2000 ton
Chiller 7	Electric Centrifugal	<u>1200 ton</u>
		9400 ton

De-Carbonizing the Campus: Planning, Tools & Technologies

Optimization Scope of Work (SOW)

Condenser side optimization (variable speed pumps and towers) – Oak and North

Hydraulically balance loads between multiple plants – all 5 plants

Optimize chiller staging based on efficiency and campus hydraulics – all 5 plants

Variable evaporator flow – Oak and North

Chilled water temperature and differential pressure reset – Oak and North, matching the other systems online

Cloud connectivity for operator support, M&V, and fault diagnostics – Secure, remote access from anywhere for Oak and North; KPIs for all 5 plants; fault diagnostics for Oak and North; operator support for all 5 plants

Close decouplers - Oak and North

Annual Savings Estimates – \$2.5M Investment

	Min Steam Chiller Run Time & Closed Decouplers	Existing Steam Chiller Run Time & Closed Decouplers
Electricity (kWh/yr)	3,747,612	6,877,615
Cooling Tower Water (gal/yr)	10,436,117	6,978,587
Steam (klbs/yr)	60,065	21,707
Total Savings (\$/yr) *	\$752,794	\$595,962
Carbon Reduction (mtons/yr)	7,730	7,179

* Excludes available utility incentives, grants and/or rebates

14

INTERNATIONAL DISTRICT ENERGY ASSOCIATION

Thank You!

Facilities & Services

Robert Roman

roman@illinois.edu

(217) 300-5810

Sylvia McIvor

smcivor@veregy.com

(312) 961-9230

APPENDIX I – Conversion Factors

Source: USEPA Clean Energy

1.00	Therm=	0.00530	Metric Tons CO2
1.00	kWh=	0.00068955	Metric Tons CO2
1.00	Home per year	10.9700	Metric Tons CO2
1.00	Vehicle per year	4.7500	Metric Tons CO2

10.97 metric tons CO2 per home per year
4.75 metric tons CO2E /vehicle/year
0.005302 metric tons CO2/therm
6.89551 × 10-4 metric tons CO2 / kWh

Chiller Plant Efficiency Steam Plant Efficiency 1.00 kW/ton 70%

Notes			
1	kWh=	3,413 Btus	
1	Mbtu Chilled Water=	1,000 Btus	
1	Therm Gas=	100,000 Btus	
1	Lb Steam=	970 Btus	@ atmospheric pressure
1	klb Steam=	970000 Btus	

De-Carbonizing the Campus: Planning, Tools & Technologies CampusEnergy2023 February 27 – March 2, 2023

