FEBRUARY 12TH, 2020

CampusEnergy2020 THE POWER TO CHANGE FEBRUARY 10-14 + SHERATON DENVER DOWNTOWN + DENVER, CO

The University of Texas at Austin W Utilities and Energy Management

PARALLEL TES SYSTEMS: IN TO TWIN IT!

Optimizing parallel Thermal Energy Storage tanks at The University of Texas at Austin

ROBERTO DEL REAL, P.E. MBA Associate Director, Energy Management and Optimization NICK SCHROEDER, P.E., CEM Plants Energy Manager

UT Austin Campus Overview

- 60,600 cooling tons capacity (main campus)
- 20M GSF, 2% added annually
- 10MGal Thermal Energy Storage (TES) capacity
- 38k tons, 66MW peak demand (2017)
- 33k tons, 60MW peak demand (2019)
- 0.69kW/Ton Avg. (2017)
- 0.59kW/Ton Avg. (2019)

A Tale of Two Tanks

- First TES Tank Commissioned in 2007
 Four MGal, 35k ton-hr capacity
 - Manual Dispatch via Operations personnel
 - Automated via Optimum Energy in 2014
 - Benefits include enhanced efficiency, resiliency, mitigate need for new power generation at 1/10th the cost.

TES-2 Commissioned in 2017

- Six MGal, 45k ton-hr capacity
- Provides resiliency to new Dell-Seton Medical Campus
- Automated dispatch via Optimum Energy offsets 6MW peak power demand - 2019
- Hydraulic Diversity from TES-1 necessitated complex controls solutions

Resiliency Benefits

- Added Redundancy: TES operation can supplement outage of largest chilling station
- Allows greater dependency on newer variable speed chillers
- Finite flow variability enhances campus dP control

Efficiency Benefits

- Allows use of most efficient variable speed chillers
- More CHW production at night when WB depressed
- CGT's maintain higher loads near efficiency peaks – improves heat rate
- Lengthens run time for more efficient CTG-10

Optimized Dispatch Profile - Example

Ultimate Goal: Flat Campus Load

Addition of TES-2 with improved dispatch controls strategy flattens UT Austin's electrical load profile within a 10% bandwidth.

Realized Efficiency Gains

Weather-normalized Watts/sf by Date 2.6 2.5 2.4 2.3 2.2 % Matts/sf 2.1 % 2.0 % 2.0 1.9 1.8 1.7 1.6 6-Aug 1-Aug 11-Aug 16-Aug 21-Aug 26-Aug 31-Aug 5-Sep 10-Sep 15-Sep Date

Normalized space energy use over similar occupancy and weather conditions highlight the reduction in fuel gas consumption.

Regression Modeling

Regression-based Optimization

Three phases of TES dispatch optimization highlight achieving ultimate goal of flat electrical generation load profile.

Controls Strategy

Controls Strategy

Push-Pull Controller

- Pump Outflow
- Valves Inflow
- Flow bias (Negative = flows out more)
 - TES tank level
 - CS5 exp. Tank pressure
- Safety Interlocks (timeinverse)
 - CHWS pressure
 - CS5 CHWR pressure

Controls/Network Topology

Lessons Learned

- Relational Controls inadequately responsive.
- Future-proof Beneficial system will eventually be essential system.
- Overlapping goals require prioritization and compromise.
- Tanks are beautiful to engineers.
- Maintenance planning/scheduling still critical.
- Regression modeling requires trial and error.

Questions?

The University of Texas at Austin Utilities and Energy Management

CampusEnergy2020 THE POWER TO CHANGE FEBRUARY 10-14 A SHERATON DENVER DOWNTOWN A DENVER, CO

Thank You!

...and please feel free to reach out to us.

ROBERTO DEL REAL, P.E. MBA Associate Director, Energy Management and Optimization roberto.delreal@austin.utexas.edu

NICK SCHROEDER, P.E., CEM Plants Energy Manager nick.schroeder@austin.utexas.edu

The University of Texas at Austin Utilities and Energy Management

