PARALLEL TES SYSTEMS: IN IT TO TWIN IT!

Optimizing parallel Thermal Energy Storage tanks at The University of Texas at Austin

ROBERTO DEL REAL, P.E. MBA
Associate Director, Energy Management and Optimization

NICK SCHROEDER, P.E., CEM
Plants Energy Manager
UT Austin Campus Overview

- 60,600 cooling tons capacity (main campus)
- 20M GSF, 2% added annually
- 10MGal Thermal Energy Storage (TES) capacity
- 38k tons, 66MW peak demand (2017)
- 33k tons, 60MW peak demand (2019)
- 0.69kW/Ton Avg. (2017)
- 0.59kW/Ton Avg. (2019)
A Tale of Two Tanks

• First TES Tank Commissioned in 2007
 – Four MGal, 35k ton-hr capacity
 – Manual Dispatch via Operations personnel
 – Automated via Optimum Energy in 2014
 – Benefits include enhanced efficiency, resiliency, mitigate need for new power generation at 1/10th the cost.
TES-2 Commissioned in 2017

- Six MGal, 45k ton-hr capacity
- Provides resiliency to new Dell-Seton Medical Campus
- Automated dispatch via Optimum Energy offsets 6MW peak power demand - 2019
- Hydraulic Diversity from TES-1 necessitated complex controls solutions
Resiliency Benefits

• Added Redundancy: TES operation can supplement outage of largest chilling station
• Allows greater dependency on newer variable speed chillers
• Finite flow variability enhances campus dP control
Efficiency Benefits

- Allows use of most efficient variable speed chillers
- More CHW production at night when WB depressed
- CGT’s maintain higher loads near efficiency peaks – improves heat rate
- Lengthens run time for more efficient CTG-10
Optimized Dispatch Profile - Example
Ultimate Goal: Flat Campus Load

Addition of TES-2 with improved dispatch controls strategy flattens UT Austin’s electrical load profile within a 10% bandwidth.
Realized Efficiency Gains

Normalized space energy use over similar occupancy and weather conditions highlight the reduction in fuel gas consumption.
Regression Modeling

Actual versus Predicted Campus MW versus OATWB

- **Average of System MW**
- **Average of Predicted System MW**

Actual Versus Predicted Campus MW versus Month

- **Average of System MW**
- **Average of Predicted System MW**
Three phases of TES dispatch optimization highlight achieving ultimate goal of flat electrical generation load profile.
Controls Strategy
Controls Strategy

- **Push-Pull Controller**
 - Pump – Outflow
 - Valves – Inflow

- **Flow bias (Negative = flows out more)**
 - TES tank level
 - CS5 exp. Tank pressure

- **Safety Interlocks (time-inverse)**
 - CHWS pressure
 - CS5 CHWR pressure
Controls/Network Topology

- A website is made available to campus and operations users to check the latest status of campus power.
- Alarm notifications are sent to key subscribers.
- Alarm information is assembled for presentation and made available to power plant operations and campus users.
- OPC tags for each meter and breaker are monitored, logic is performed to evaluate and process alarm information.
- Field data is centralized in an OPC server.
- Smart meters are installed in the power plant and in campus buildings.

Data Flow
Lessons Learned

• Relational Controls inadequately responsive.
• Future-proof – Beneficial system will eventually be essential system.
• Overlapping goals require prioritization and compromise.
• Tanks are beautiful – to engineers.
• Maintenance planning/scheduling still critical.
• Regression modeling requires trial and error.
Questions?

The University of Texas at Austin
Utilities and Energy Management

CampusEnergy2020
THE POWER TO CHANGE
FEBRUARY 10-14 • SHERATON DENVER DOWNTOWN • DENVER, CO
Thank You!

…and please feel free to reach out to us.

ROBERTO DEL REAL, P.E. MBA
Associate Director, Energy Management and Optimization
roberto.delreal@austin.utexas.edu

NICK SCHROEDER, P.E., CEM
Plants Energy Manager
nick.schroeder@austin.utexas.edu