DECEMBER 2018

The University of Texas at Austin Utilities and Energy Management

THE EVOLUTION OF THE UT AUSTIN UTILITY PLANTS

JUAN ONTIVEROS, P.E. The University of Texas at Austin

BEN ERPELDING, P.E. Optimum Energy

Hosted by

EMPOWER INIEGY SOLUTIONS

DEC. 9-11, 2018 - ATLANTIS, THE PALM - DUBAI, UAE

Organized by

Presentation Objectives

- •UT Austin's Philosophy for Cooling
- UT's Actual Historical Performance
- Impact to Power Generation
- •UAE Plant Operation vs UT Plant Operation
- VFD vs Constant Speed

The University of Texas at Austin Utilities and Energy Management

Evolution of Optimization

2007 45K Tons - Eliminate Steam Turbine Chillers, Add 15K Electric Chillers w/VFD's but no Optimization

2008 45k Tons - Start Optimizing 15K ton plant

> 2009 Evaluate Distribution DP control and VFD Pumps at CS3

2013 Optimize Multiple Plant Dispatch, Reduce DP to 10 to 4 psi (summer vs rest of year) (4 plants)

> 2014 – 2017 Start Using 4 MG TES

2018 - 60k Tons Add 15k All VFD Plant, Add VFD to 5k ton OM Chiller, Start Using 6 MG TES Annual Average kW/ton = 0.84 15 million GSF MW = 59, Tons = 29.3k, Steam 200k

Annual Average kW/ton = 0.80 15.9 million GSF MW = 60, Tons = 33.1k, Steam = 190k

Annual Average kW/ton = 0.77 15.9 million GSF MW = 62, Tons = 34k, Steam = 191k

Annual Average kW/ton = 0.66 17.9 million GSF MW = 61, Tons = 33.4k, Steam = 188k

4-year Average kW/ton = 0.66

18.3 million GSF MW = 61k, Tons = 33.6k, Steam = 203k

Annual Average kW/ton = 0.615 19.6 million GSF MW = 65, Tons = 38.3k, Steam = 240k Total Cumulative Saved: 509.6K MWh \$21.3 Million

6

The University of Texas at Austin Utilities and Energy Management

Persistent Monitoring

Performance To Date vs Last Year

- Using Both TES for First Time (80,000 ton-hrs)
- Started TES & Chilling Station Optimization
 - Working through transitions:
 - Charging to Discharging & Vice Versa
 - Multiple Chilling Station Dispatch

- Goal is to Absorb Campus Growth With No New Plants
- Optimize Power Generation vs Chilled Water Production
 - Shift load to Nighttime Increase Electrical Generation Efficiency (~3% Better)
- Peak Electrical Load and Cooling Load is August to September
 - Peak Power = 59 MW vs last year at 65 MW
 - Peak Cooling Demand = 34,118 vs last year at 38,300 (includes TES Dispatch)
 - 30,000 tons are Spare (CS3, CS4 & 5-2500 ton Chillers at CS7)

Auxiliary Energy Performance

UAE District Energy Plant

- Condenser water pump efficiency decreases
 as load decreases
- Primary pumps behave exactly the same
- This is the result of constant speed pumping and lack of VFDs
- Pumps cannot adjust with load so efficiency is a step function based on the number of pumps running
- # Pumps On = # Chillers On
- Chiller staging becomes a critical factor in overall efficiency

Variable Speed Condenser Water Pumps

UT Austin

- Condenser water pump efficiency increases as load decreases
- Variable CHW primary-only plant (no primary secondary)
- Pumps adjust with load
- # Pumps on does not equal # Chillers On
- Chiller staging becomes less of a factor in overall efficiency

Variable Speed Chillers vs. Constant Speed Chillers

- Chiller efficiency is linearly proportional to lift
- Variable speed chillers are more efficient at all loading due to redundant equipment.
- Constant speed chillers use constant speed condenser water pumps
- Variable speed chillers are operating at variable condenser water flow
- > 20% savings even at high wet bulbs

Cooling Tower Selection

Site	Entering (deg F)	Leaving (deg F)	Wet bulb (deg F)	Approach (deg F)
UT Austin CS7	93	83	78	5
UAE site 1	103.1	93	86	7
UAE site 2	105.1	95	88	7
UAE site 3	105	95	86	9
UAE site 4	104.9	95	87.62	7.38
UAE site 5	103.1	93.2	87.8	5.4
UAE site 6	102.38	93	87.8	5.2
UAE site 7	107.6	96.8	91.4	5.4
UAE site 8	105	95	86	9
Recommended design for UAE	101	91	88	3

Cooling Tower Selection

- Approach gets worse as wet bulb decreases
- Approach improves significantly at part flow conditions
- It is possible at 33% flow to operate at less than a 1 deg F approach
- Towers at UT Austin are consistently operating at 1.5 to 2.5 deg F approaches year round.

All Variable Speed Chilled Water Plant

UAE District Energy Constant Speed Plant vs UT Austin All Variable Speed

Outdoor Wetbulb (deg F)

The University of Texas at Austin Utilities and Energy Management

Questions?

JUAN ONTIVEROS, P.E.

The University of Texas at Austin Juan.Ontiveros@austin.utexas.edu

The University of Texas at Austin Utilities and Energy Management

BEN ERPELDING, P.E.

Optimum Energy ben.erpelding@optimumenergyco.com

