What Is this Machine Learning Stuff
and
How Can | Use It?
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MACHINE LEARNING

 Init’s simplest form
Machine learning is
pattern detection

« What comes next?
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WHY DO WE NEED MACHINE LEARNING?

* We have too much data and are
breaking excel

« Most data relationships are much more
complicated than 2-D.
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MACHINE LEARNING VS LINEAR REGRESSION

Traditional non-linear regression Machine learning allows for limitless
analysis allows 2D M&V normalization dimensional normalization and
prediction
y =0.1118%° - 8.0559x’ + 187,79x + 319.85
R?*=0.9239

........................
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MULTIDIMENSIONAL DATA RELATIONSHIPS

EXAMPLE: Building Chilled Water Load

OA Wetbulb

Time of Day

Day of Week (weekend/weekday)
Month of year

Holiday and Class Schedule
Solar Angle

UV Index

“My building is consuming 500 Tons right now, is that good
or bad?”
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MODEL ACCURACY AND SCORING

* Accuracy is el Moo At v Pt
‘“scored” 1200 S
based on a e
metrics

 RM2is
typically above
97%
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WHAT ARE PRACTICAL APPLICATIONS OF MACHINE
LEARNING?
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MEASUREMENT AND VERIFICATION

“Live” M&V

Train model “pre
implementation”

M&YV with “post
implementation”

ARNUC M3y

Memorial Sloan Kettering
Cancer Center

Current kW Usage

Implementation Date H242017 12.00.00 AW
Predicted Enecgy Use - 4,705 3311 75 kWh
Eneegy Use 2 410,670 75 KWh
Energy Savings 208,717 91 KW

% Energy Savings 10724 %
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FAULT DETECTION AT ENERGY METER LEVEL

« When usage varies from [

predicted, trigger an Z i
alarm 2 Memorial Sloan Kettering
o “Live building 1884 Cancer Center

benchmarking” Current kW Usage

«  Current kbtu/sf
compared to
predicted

. More macro than ‘“rule
based” fault detection
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FAULT DETECTION AT SYSTEM LEVEL

« Predict component performance and “energy” alarm when
component is not performing

. e WS, HRSG Overview
CHE BB A
> J

« Component scheduling
« KW/Ton

e Supply temperatures
 Pressure differentials

« Endless possibilities
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PRICE FORECASTING FOR TIME OF DAY ENERGY RATES

e ConED historical
time of use rates
are published
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LOAD PROJECTING AND EQUIPMENT DISPATCHING

« 2 day ahead load
prediction

e Weather forecast taken
from NOAA

I(_Jurrent Chilled Water Tons

DB
« WB
UV Index

« Upcoming holiday

« Calendar (time of day, day
of week
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HOW DOES IT WORK?
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NEURAL NETWORKS: BASIC

 Input layer,

* Hidden layer (applies a “weight” ,
to each input combination) N\ «,—
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ADD DEPENDENT VARIABLES

 Limitless number p
5 A
of variables r /;:/
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ADD ITERATIONS: DEEP LEARNING

hidden layer 1  hidden layer 2 hidden layer 3

input layer

i
Sl
Vo

| : SMITH
www.smith-eng.com NENG'NEERING



http://www.smith-eng.com

DECISION TREES

« “Boosted”
decision tree
adds an error
to each stage

yes

Died
0.17 61%

L

@_no—l

Survived
0.73 36%
no
Is # family
'Iyes'I members no
l aboard > 2.57 1

Died Sn.uvi\.feq
0.05 2% 0.89 2%
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HOW CAN YOU USE IT?
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HOW CAN YOU USE IT?

* Hire data scientist iR

« Use cloud-based tools
 Microsoft Azure
e Amazon ML
« Google Tenserflow
« IBM Bluemix
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MACHINE LEARNING MODEL TRAINING PROCESS

« Step 1) clean data......... this is the e
hardest part g B

« Step 2) Divide data into 2 sets ) e 1 ) 1
« 80% to train model r -
e 20% to score model

« Step 3) Tune the model (hyperparameter

tuning) =) sl — O

Input Data  Machine Learning  Pregiction

« Step 3) Use model to predict future Aigosilhm
outcomes
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LIVE DATA FOR LIVE PREDICTIONS

« The greatest value is with doing this with live data

Batch training Real-time predictions

&
-
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—

Predictions
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DATA HISTORIAN AS MACHINE LEARNING GATEWAY

 |Integrate with data historians to empower it with
machine learning

Wonderware
Historian
(‘ OSI ° Publisher
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Thank You

This presentation is protected by US and International copyright laws. No part of this presentation or any documents or other written materials
contained herein may be reproduced, transmitted displayed or otherwise used in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without prior written permission of Smith Engineering PLLC.

© Smith Engineering PLLC 2017 All rights reserved
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