

How Digital Twin Will Transform Chilled Water Systems

a case study on how good is getting in the way of great

Vanessa Freidberg, PE, CEM, LEED

Siemens Smart Infrastructure

Chilled Water System Optimization Success

Performance Long-term?

- Critical systems are complex and dynamic, always changing
 - Equipment changes and degradation
 - Operator interventions and staff turnover
 - Load and occupancy changes
 - Environmental condition shift between seasons
- Commissioning is a snapshot in time
- Re-commissioning is manual and expensive

Best Operators Experience Drift

Without monitoring, performance drifts back towards baseline

Protect & Improve on Investment

Analytics – Fault Detection & Diagnostics

- 1 chiller plant
- 5 chillers
- 5 cooling towers
- 5 primary chilled water pumps
- 5 secondary chilled water pumps
- 7 condenser water pumps
- Total: 190 actively monitored rules
- Quarterly review and remediation of faults

ALARM

Alarms are immediate issues, found by comparing a single monitored value to a predefined limit.

FAULT

Faults define "<u>off-normal</u>" conditions, continuously comparing building or equipment data to an advanced set of analytics/rules that consider multiple interdependent factors.

Figure 1: P2 Chiller Fault Distribution

Figure 2: P2 Cooling Towers Fault Distribution

Figure 3: Pump Fault Distribution

Customer Fault Example A – CW Flow

Customer Fault Example A – CW Flow

Fault ID	Fault	Equipment	Description	Branch/Owner Feedback
A	Chillers_Condenser Flow Not at Setpoint	Chiller 1 Chiller 2 Chiller 3 Chiller 5 Chiller 6	Each chiller has experienced instances of condenser flow not at setpoint within the past 30 days. Investigate condenser flow loop and verify whether this can be adjusted. Deviation has averaged as: Chiller 1 - 523 GPM Above Setpoint (63 hours) Chiller 2 - 721 GPM Above Setpoint (23 hours) Chiller 3 - 265 GPM Above Setpoint (18 hours) Chiller 5 - 182 GPM Above Setpoint (109 hours) Chiller 6 - 323 GPM Below Setpoint (158 hours)	The CW isolation valve minimum positions adjusted to improve operations and increase energy savings going forward.

Customer Fault Example B – CHW Pump

Customer Fault Example B – CHW Pump

Fault ID	Fault	Equipment	Description	Branch/Owner Feedback
В	CWP-18E_Pump VFD Remains at 100% Speed	Condenser Water Pump 18E	There have been 1,000+ hours in which condenser water pump 18E has operated above 90% speed. This indicates that the system capacity may not be able to reach the demand with 18E operating alone.	When Chiller 6 runs by itself, it cannot make CW GPM setpoint with only pump 18E running. This could be because of pump size constraints or possible pump mechanical issues. Suggested onsite evaluation to further develop root cause.

Increased Lifecycle Value

Sept. 27-29 Austin Convention Center Austin, Texas

What Isn't Great?

- Results were good, everyone was happy
 - So what else?
- Traditional analytics
 - Tell us if equipment is meeting what is expected
- Limitation of analytics
 - Not able to tell us root cause of why
 - Requires manual on-site investigation
- Digital twin
 - Identify and evaluate root cause automatically

What is a Digital Twin?

A Digital Twin is a *model* of your system

When provided with the *same inputs* as your system, it should calculate the *same outputs* as observed

A Digital Twin can be used to detect:

- Sequence faults
- Performance faults

A Digital Twin can be used to evaluate:

- Operational changes
- Equipment upgrades

Sequence Faults

Sequence fault: when observed parameters deviate from expectations per sequence of operations

Compare observed values to modeled values

CWS setpoints are the same

CWS:

This portion of the sequence is operating as intended

CW flow setpoints are different

A sequence fault has occurred

Diagnosing Sequence Faults

c	Operator Intervention		Commissioning Error		Performance Drift
ورايع ه	Setpoint has been overridden	وا ا ا ا ۱۱۱۱	Control parameter does not match with Digital Twin	Ø	No actual issue – apparent issue due to error in output measurement
	Speed command has been overridden	LUU	Sensor or device scaling issue	LUUL	Tower fill damaged or scaled
	Min/Max limit has been overridden				

Performance Faults

pt. 27-29 Austin Convention Center Austin.

Performance fault: when equipment uses more energy than expected to deliver the output

Compare observed values to modeled values

Setpoints are the same Sequence faults have been resolved

CT speeds are the same This equipment is performing as expected

CWP speeds are different A *performance fault* has occurred

Diagnosing Performance Faults

Unknown Loads	Maintenance Issues	Sensor Error	
Balancing valve closed off	Clogged pump strainers	No actual issue – apparent issue due to error in output measurement	
Unmetered use of water or CT capacity	Plugged or fouled chiller tubes		
	Tower fill damaged or scaled		

Digital Twin Example – CHW Pump

Fault ID	Fault	Equipment	Description	Branch/Owner Feedback
В	CWP-18E_Pump VFD Remains at 100% Speed	Condenser Water Pump 18E	There have been 1,000+ hours in which condenser water pump 18E has operated above 90% speed. This indicates that the system capacity may not be able to reach the demand with 18E operating alone.	When Chiller 6 runs by itself, it cannot make CW GPM setpoint with only pump 18E running. This could be because of pump size constraints or possible pump mechanical issues. Suggested onsite evaluation to further develop root cause.

Digital Twin Example – Chiller kW/ton

observed vs modeled

Expected Output

Performance error

Digital Twin Example – Sequence Results

Thank You!

Vanessa Freidberg, P.E., CEM, LEED <u>vanessa.freidberg@siemens.com</u>

When: Tuesday, September 28th, 2021 Where: Rules and Regs (Located on the 7th floor of Fairmont Hotel) Time: 7:00PM – 9:00PM

SIEMENS