

Designing and Implementing an Ultra Efficient Chilled Water System at Wake Forest University

Mike Draughn, Wake Forest University
Chase Davis, RMF Engineering
Brock Frisbie, Optimum Energy

Agenda

- Campus and Chilled Water System Overview
- Design Process and Efficient Equipment Selection
- Future Growth Planning
- Path to Optimization
- Project Results
- Project Challenges
- Future of CHW System

Campus Overview

Wake Forest University

District Utilities for Main Campus

Steam and Chilled Water Generation

Distribution includes Electrical & Water/Sewer

Growth of connected Chilled Water

10 year growth from 2.5 to 3.2 million Sq. Ft.

Campus Overview – Energy Use and Emissions

Energy Use per Sq. Foot decreases have helped to offset energy use from added space

Gross Carbon Emissions continue to decrease

Chilled Water System Overview

2015 Chilled Water System (Baseline)

- 4 Plants, 10 Chillers, 6700 Tons
- 40 Buildings Totaling 3.1M ft²
- Aging Equipment
- R-11 Refrigerant
- 0.78 kW/Ton Campus CHW Efficiency

Shift System Priorities To Sell Objectives

- Focus on Maintenance/Modernization
- Decommission Old Plants
- Upgrade South Plant
- Replace/Expand North Plant
- Optimize During Upgrades

Design Process – Project Goals

South Chiller Plant (2017)

- Variable Primary CHW Conversion
- Variable CDW Pumps

North Chiller Plant (2018)

- Double Capacity from 1200 to 2400 Tons
- VFD Chillers
- Variable Primary CHW
- Headered Variable CDW Pumping

Campus Chilled Water System

Optimized CHW Generation and Distribution

Design Process – Setting A New Standard

Energy Efficient Equipment

- Headered CDW and CHW
- Variable Volume Pumping
- Variable Speed Chillers

Team Effort

- Collaboration between owner and engineering
- Transparency in design and modeling

Design Process – Hydraulic and Distribution Analysis

- Hydraulic limitations on load hours
- Validating Future Projects
- Establish Working Model

Implementation of Optimization

Engineering Analysis

Develop project scope of work

Model baseline and projected energy

Implement within design strategy

Baseline Measurement

Determine parameters for measurement

Integrate metering devices with BAS

Implementation of Optimization Solution

Project Implementation and Commissioning

Custom Optimization programming and deployment

On site testing and continued remote support

Project Results

0.78 kW/Ton Baseline

0.56 kW/Ton Projected

0.54 kW/Ton Actual

\$ 220,000 / year saved

Project Challenges

- Confidence in data, historical and projections
- Staff Adoption
- Funding
- Seasonality
- Future Needs

Future of CHW System – Continued Improvement

Continued Efficiency Improvement as CHW Needs Increase

Future of CHW System - Expansion

North and South Plant Connector Distribution Improvements

South Chiller Plant Expansion Renewal, Capacity, Optimization

New Academic Commons site Building Efficiencies Site Utility Improvements

Thank you!

Mike Draughn
Wake Forest University

Chase Davis
RMF Engineering

Brock Frisbie Optimum Energy

