LEADING THE WAY CampusEnergy2022

Feb. 15-18 | Westin Boston Seaport District Hotel | Boston, Mass.

University of Nebraska-Lincoln Case Study: Tube Fouling Prevention Optimizes Chiller Performance

Aaron Evans, University of Nebraska-Lincoln Michael Crocker, Innovas Technologies

UNL Utility Services

Three campuses: City (1929), East (1915), Innovation (2015)

City & East Utility Plants started as powerhouse/steam plants

Chilled water distribution began in the 1960s

UNL Utility Services

Campus Chilled Water

- 9.7 million ft² of building area
- Variable primary, direct connected*
- 34,000 ton capacity
- 19,600 ton peak load
- 22 miles of distribution piping
- 11 million gallons of TES capacity
- 16 million gallon total volume

Chiller Cleaning

- 11 Total Chillers
 - 2,000 4,000 tons
 - 49,600 total tubes
- Cleaned every 1-3 years
- 1.2 minutes per tube to prep machine, clean, test, inspect, and reassemble
- Poor student worker retention

1968 chiller still in operation

Defining the Problem

• Chiller tube fouling is ridiculously *EXPENSIVE*

30K RT x 0.44 kW/RT x \$0.07/kW-hr x 4500 hrs/yr x 7% = \$300,000/yr

• Manual tube brushing is time-consuming, messy, hazardous work

Feb.15-18 | Westin Boston Seaport District Hotel | Boston, M

Background Info & Project Setup

• BACKGROUND INFORMATION:

- UNL—CCUP- CHILLERS 6 & 7
- EACH CHILLER (6/7) ~2,000 TONS
- MADE UP OF TWIN 1,000 TON CHILLERS (A/B) WITH PARALLEL CONDENSERS
- COMMON CHILLED WATER & CONDENSER WATER HEADERS

• PROJECT SET-UP:

- APRIL 2019 INSTALL TUBE CLEANING SYSTEM ON CH. 6A & 6B CONDENSER
- BEFORE/AFTER EVAL OF CH. 6A/B TUBE CLEANING SYSTEM INSTALLATION
- SIDE-BY-SIDE EVAL OF CHILLER 6 WITH TUBE CLEANING SYSTEM VS. CHILLER 7 WITHOUT TUBE CLEANING SYSTEM

Chiller 6B Condenser Approach Temps Improved Significantly

FIND THE SOURCE OF INEFFICIENCY

Simultaneously Consider Multiple Factors Impacting Efficiency:

- Chiller Load (L)
- Chilled Water Supply Temperature (CHST)
- Entering Condenser Water Temperature (ECWT)
- Chiller Tube Fouling

Chiller 6B Condenser Approach

CampusEnergy2022 Feb.15-18 Westin Boston Seaport District Hotel Boston, MA

Chiller 6B Evaporator Approach

Efficiency Analysis Chiller 6 Before/After Tube Cleaning System

Chiller Characteristic	Before TCS (2018)	After TCS (2019)	After TCS (2020)
Chiller 6 Avg. Efficiency Degradation During Season	27%	4%	7%
Chiller 6 Avg. Cond. Approach Temp. Increase During Season	5.3 F	0.1 F	0.1 F
Chiller 6 Avg. Evap. Approach Temp. Increase During Season	0.0 F	0.9 F	1.2 F

KEY OBSERVATIONS:

- Chiller 6A/B maintained efficiency through cooling season much better in 2019 & 2020 after TCS installation.
- After TCS install, Chiller 6A/B condenser approach temperature did not increase through the cooling season.
- Chiller 6A/B exhibited more evaporator approach increase in 2019 and 2020, contributing to efficiency losses.

Efficiency Analysis Chiller 6 & Chiller 7 Side by Side

Characteristic (2019 Cooling Season)	Chiller 6 With TCS	Chiller 7 Without TCS
Efficiency Degradation During Season	4%	9%
Condenser Approach Temp. Increase During Season	0.1 F	3.5 F
Evaporator Approach Temp. Increase During Season	0.9 F	1.4 F

Characteristic (2020 Cooling Season)	Chiller 6 With TCS	Chiller 7 Without TCS
Efficiency Degradation During Season	7%	13%
Condenser Approach Temp. Increase During Season	0.1 F	3.5 F
Evaporator Approach Temp. Increase During Season	1.1 F	1.7 F

Lessons Learned / Next Steps & Plans?

• **EVAPORATOR** opportunities

- Remove loose scale from waterbox
- Trim divider plate gaskets as needed
- Second installation ready for this spring
- Expanding to other units based on existing performance

HOW IT WORKS

How Tube Cleaning Systems Work

UNL's TCS have run for over 3 years without any increase in condenser approach temperature and no manual tube cleaning.

How Automatic Tube Cleaning Systems Work.

- The Skid is comprised of the Controls Enclosure, Pump, & Application Controller.
- 2. The Collector is where balls are staged between injection cycles.
- The strainer inside the Ball
 Trap prevents balls from escaping downstream.

BALL TRAP

3.

Example TCS Layout on chiller.

- 1. The Skid is comprised of the Controls Enclosure, Pump, & Application Controller.
- 2. The Collector is where balls are staged between injection cycles.
- 3. The strainer inside the Ball Trap prevents balls from escaping downstream.

ATCS Technology: Multiple dimensions of value.

- Chiller energy efficiency improves 5-15%
- Reduce/eliminate manual tube brushing & cleaning
- Increases chiller capacity
- Improves chiller plant availability
- Reduce GHG emissions and environmental impact

FOR WATCHING THIS PRESENTATION

Aaron Evans, University of Nebraska-Lincoln

Michael Crocker, Innovas Technologies

