

Improving the Cornell Plant with New Package Boilers

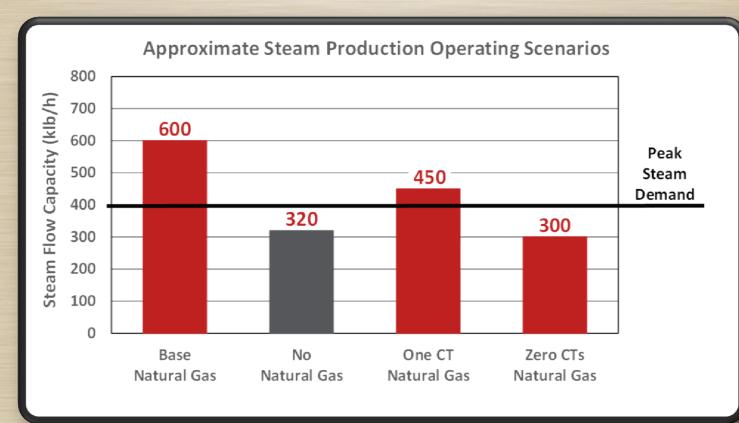
International District Energy Association Campus Energy Conference 2016

Stacey Edwards (Cornell University) Michael Blake, P.E. (Sega Inc.)

Central Energy Plant (CEP)

The CEP provides steam, electricity, & chilled water to over 160 campus buildings, equating to approximately 14 million gross square feet on central campus.

CEP Summary


CORNELL STEAM GENERATION RESOURCES

Unit	Year Installed & Manufacturer	Fuel(s)	Capacity (klb/h)
CT/HRSG 1	2009 Solar Titan/Rentech	Natural Gas #2ULSD	60 (unfired) 150 (duct fired)
CT/HRSG 2	2009 Solar Titan/Rentech	Natural Gas #2ULSD	60 (unfired) 150 (duct fired)
Boiler 5	1965 B&W	Natural Gas	100
Boiler 6	1992 Foster Wheeler	Natural Gas #2ULSD	100
Boiler 7	1992 Foster Wheeler	Natural Gas #2ULSD	100

Why New Boilers?

Improve reliability (Goal—99.9% reliable steam export)

Cover Peak Steam Demand of 400 klb/h for Failure Scenarios

Plant modernization (existing boilers 25-50 years old)

New Boilers Over Temporary Boilers

More cost effective

Anticipated Cost (2011) \$250,000/year vs. Actual Cost (2013) \$420,000/year
 Life cycle costs of rental vs. new boilers = \$4 million savings over 20 years

- Reduced uncertainty
- Improved reliability
- Improved plant maintenance access
 - ✓ Free CT maintenance aisle space where rental boilers were located
 - ✓ Utilize space of two inactive boilers to be demolished (starting 2012)

Evaluation of New Boiler Alternatives

Reviewed New Boiler Options: Performance, Cost, Schedule, Risks

- Option 1: Two 75-kpph boilers
- Option 2: One 100-kpph boiler
- Option 3: One 150-kpph boiler
- Study recommended Option 1 Two 75-kpph D-Style boilers:
 - Fit space well and relative ease of move-in
 - Capacity to meet peak steam demand for failures
 - Highest degree of operational flexibility & plant reliability
 - Highest operational efficiency (low load / min. fire operation)

Project Schedule

Start Design

January 2014

1st of three Key Internal Approvals (typ. = 1 month): Design

Project 20 Months

- 2nd Key Internal Approval: Boiler Procurement
- Boiler Shop Drawing Review/Approval: 3.5 months
- Boiler Design/Fabrication: 9 months from Sept. 2014
- Design and Bid: 4 months
- 3rd Key Internal Approval: Installation
- Annual Steam Shutdown (May 2015)
- Installation: 6 months from Steam Shutdown

Boilers

Operational -October 2015

Project Budget

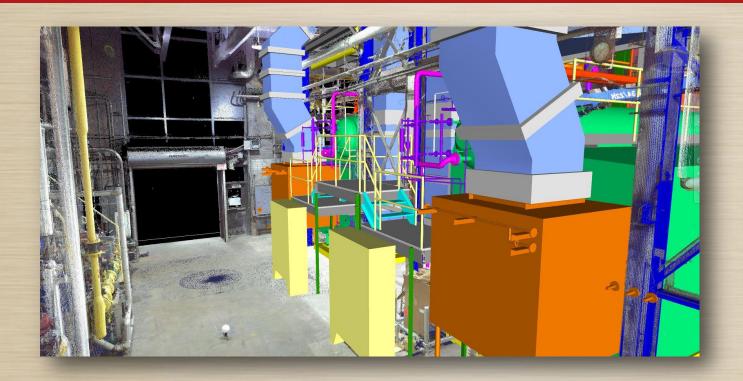
Breakdown	Conceptual Design	Actual Costs (Projected Feb. 2015)
Construction	\$1,400,000	\$2,300,000
Engineering (Design, air permitting, compliance testing)	\$700,000	\$700,000
Equipment, Start Up, Training	\$3,200,000	\$3,500,000
Cornell Internal Project Costs	\$400,000	\$200,000
Project Contingency	\$1,100,000	\$100,000
TOTAL	\$6,800,000	\$6,800,000

Conceptual Design

- Contractor provided input for installation
- Boiler OEM budget quotes

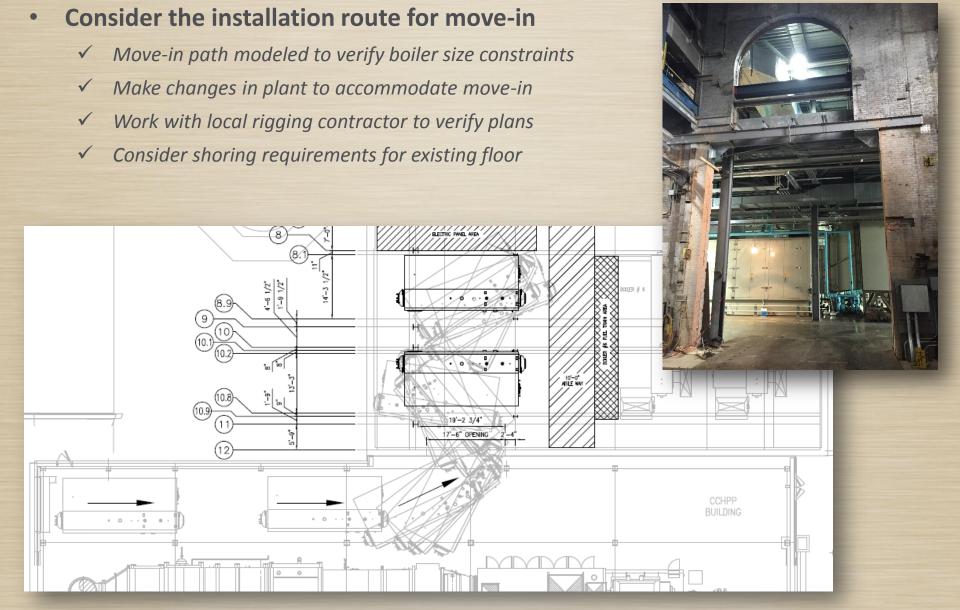
Project

- Construction costs higher than anticipated (customization)
- Boiler costs higher than anticipated (customization)


Held to Conceptual Design budget, Reduced Cornell Project Costs to Offset Overage

Project Team

- Installation contractor self performed all work (subcontracted electrical & rigging)
- Competitive RFP Process
- OEM supplied boilers (trim, inst., burners, controls, fans, VFD, breeching)
- Dedicated experienced operator for Owner (helped process)


Design Phase; Some Key Considerations

Verify existing plant dimensions and layout.

- ✓ As-builts may not be correct
- ✓ Hold contractor responsible for field verification prior to fabrication
- ✓ Use 3-D scanner for field verification with 3-D model
- Verify adequacy of existing structural, electrical, mechanical systems for new equipment

Design Phase; Some Key Considerations

Design Phase; Some Key Considerations

- Plan schedule phases to prevent contractor interferences (not that easy!)
- Identify owner preferences
 - ✓ Access preferences
 - Operational preferences
 - Redundancies / spares
 - ✓ Manufacturer preferences
 - ✓ Design standards
 - ✓ Tagging / Identification

Plan for Construction Phase Risks

- Unclear communication of responsibilities/supply could cause budget and schedule issues.
 - \$3.5 million in Owner Supplied equipment on a \$2.0 million dollar construction cost
 - Bid documents did not contain approved OEM drawings
- Not receiving air permit could delay construction.
 - ✓ Air Permit received June 2015—just in time
- Missing outage windows for tie-ins could result in need for additional outages, costs, and schedule delays.
 - Enabling work was done during May shutdown

Startup and Testing

Field Checkout	 Combination of Engineer, Owner, and Boiler OEM Two boilers with two fuels require more time 	
Boil Out	Chemical Vendor and Owner	
	Procedure prepared by Engineer	
Steam Blows	Contractor supply of valve/piping/silencer	
	Boiler OEM and Owner operating equipment	
	Controls Field Service from Boiler OEM	
Tuning	 Training opportunity for operators (3 week period) Control of gas between core and spuds was issue 	
	• Control of gas between core and spuds was issue	
Testing	• Stack tests passed on both boilers for both fuels on 1/13/16	
	Onsite by Poiler OEM	
Training	Onsite by Boiler OEM Customized for Cornell	
	• Four 8 hour training shifts (so all shifts get day training)	


Current Status

- Stack testing complete: We passed!
- Final checkout / punchlist items
- Performance testing complete
- Supplying steam to Campus

Questions

