LEADING THE WAY CampusEnergy2022 Feb.15-18 Westin Boston Seaport District Hotel Boston, MA

Thermal Energy Storage (TES) for Resiliency and Capital Offset at the University of Oregon

Justin Grissom, P.E.

BURNS MEDONNELL.

February 17, 2022

(A)(A (III.

UNIVERSITY OF OREGON OVERVIEW

- 295-acre campus located in Eugene, Oregon with 80+ buildings
- Tier 1 Public Research University and #1 in Oregon
- Over 22,000 students enrolled in 2021-2022
- 10MW Combined Heat and Power (CHP) plant
- 6.5MW Emergency Power Generation
- Two (2) Natural Gas Fired Boilers (60/65 kpph)
- 7,500-ton Chilled Water Plant
- Nearly four miles of Distribution Tunnels

UTILITY AND ENERGY INITIATIVES

- EWEB study and potential rebates
- Delta-T improvements
- Equipment Staging and Pump Control
- Building-side improvements
- Hydraulic modeling
- Strategic Energy Management Plan

DRIVERS FOR UPGRADES

- Campus is growing!
- Chilled water load is projected to grow from 6,000 tons to 13,500 tons by 2050
- Need to expand existing chilled water plant capacity to maintain N+1 redundancy
- Potential for rebates and future financial advantages with TOD electrical rate structure
- Desire for increased resiliency

- Developed load projections
- Focus was on 2030 with consideration though 2050
- Load Assumptions
- Current Day CHW load profile
 - Load Growth (2019 peak 4,600 tons)
 - ▶ 6,000 Ton Peak +30%
 - ▶ 8,400 Ton Peak +80%

Identified new chiller capacity/capital costs needed for future loads

- Chiller plant design based on 1500 ton "blocks" of capacity
- Determined that 2 chillers could be avoided through 2037
- Preserves future plant floorspace, reduced maintenance costs

Evaluated tank sizes, materials, and operating scenarios

- 2, 3, and 4 MMGal tank capacities evaluated
- Concrete and Steel tanks were both considered
- Load Levelling, Partial Storage, and Full Storage analyzed
- Load Levelling maximized capital offset with minimum tank size
 - Likely different results with a time-of-day rate structure

- Financial analysis and LCC-based tank size selection
- Concrete Tank (tank only)
 - 2MMGal/15,000 ton-hours (95' x 55')
 - 4MMGal/30,000 ton-hours (130' x 55')
- Steel Tank (tank only)
 - 2MMGal/15,000 ton-hours (81'x 56')
 - 4MMGal/30,000 ton-hours (112' x 58')
- Costs are roughly equal at budgetary pricing level steel vs. concrete
- Steel tank requires less diameter for similar overall height

Under current loads:

LEADING THE WAY

CampusEnergy2022

Feb.15-18 Westin Boston Seaport District Hotel Boston, MA

- Max \$ Savings = Load Levelling (LL)
- \$ saved for 2MG = 3MG = 4MG
- ANY Future Load Growth limits operation of 2MG Tank
- 3MG Tank Size Recommended
 - LL on 99% of days thru 100% peak growth
 - LL even on peak day thru 50% peak growth

BURNS MGDONNELL®

Note: Excess Storage must be >0 to Load Level

Design

DCIATION

(2) 24"

Design

Feb.15-18 Westin Boston Seaport District Hotel Boston, MA

LEADING THE WAY
CampusEnergy2022

- Bidding
 - Solicitation allowed for concrete or steel
 - Multiple bids received
 - Generally similar bid \$ and duration
 - One outlier with major exclusions

EFFORTS TO DATE/CURRENT STATUS

- Tank has been awarded
- Permitting completed
- Site work has begun
- Temporary chilled water shutdown for tie-ins completed

NEXT STEPS

Complete additional balance of plant work

- New Cooling Tower
- CHW Pump VFDs
- Upgrades to Free Cooling Heat Exchanger
- Control System upgrades
- Miscellaneous structural upgrades

LESSONS LEARNED

- Low cost, low carbon electricity is challenging for ECMs
- Load levelling will likely prevail with no time-of-day rate impact
- Benefits to selecting a vendor that can provide a full "turnkey" tank installation
- Water treatment costs can be significant

