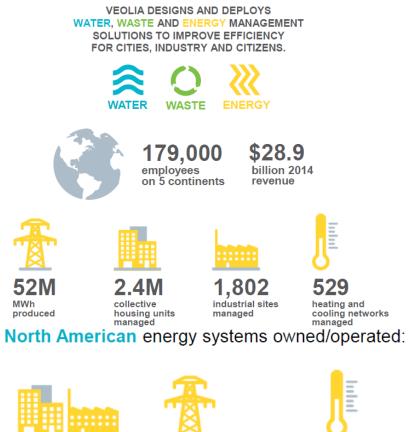


Combined Heat & Power with Spinning Reserve - Core of a Larger MicroGrid

Suresh Jambunathan, Veolia North America Director, Business Development

EOLIA


630-335-4544 Suresh.jambunathan@veolia.com

AGENDA

- Observations: Macroeconomic trends
- CHP, Spinning Reserve, Microgrids: What, why & how
- Economics
- Project Development

VEOLIA

Who is Veolia? plus a Boston area district energy CHP + microgrid

14.9M lbs./hour steam

capacity

433 MMBtu/Hour hot water capacity

540 MW

Cogeneration capacity

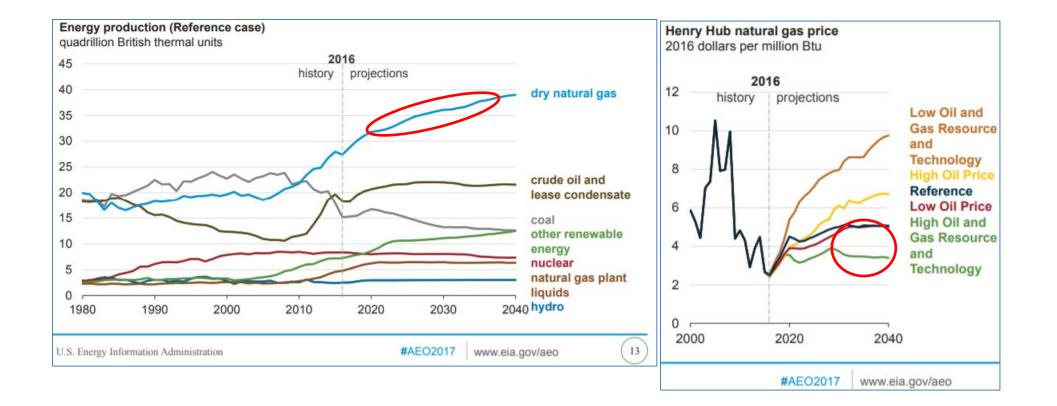
124

miles of steam/hot water distribution pipe

31 miles of chilled water distribution pipe

Green Steam Project Reducing Boston's Carbon Footprint Cuts carbon emissions by 475,000 tons/year, equivalent to:

- Removing 80,000 cars from the streets annually
- Installing 600 football fields of solar PV



290,394 tons of chilled water capacity

A paradigm shift in primary energy supply across the USA

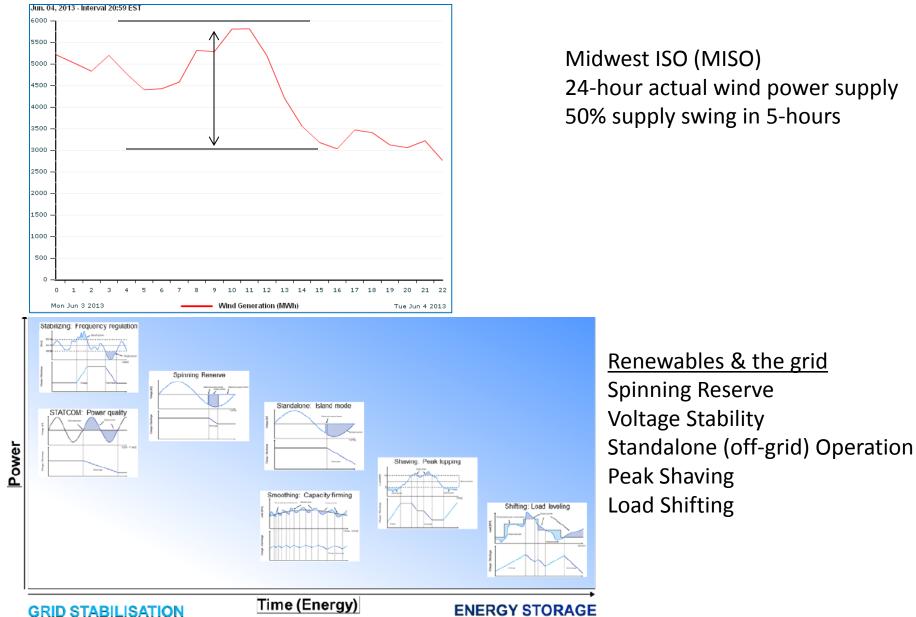
Growth: Natural gas, renewable energy (wind, sun, hydro etc...)

Decline: Coal, nuclear energy

Points towards CHP + renewable energy + dynamic dispatch

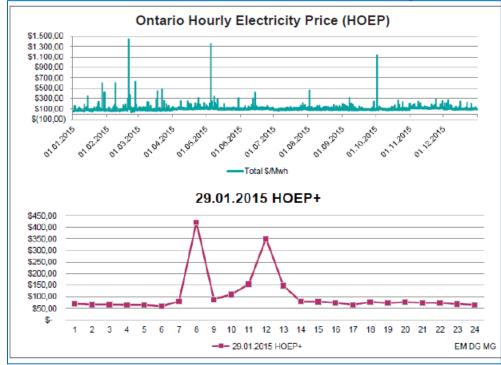
Clean, reliable & inexpensive energy "powers" economic vitality.

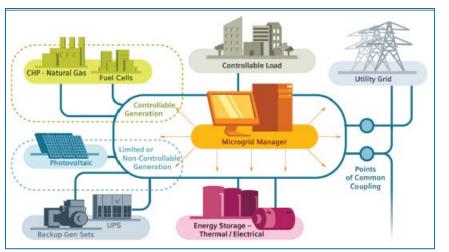
Microgrids centered around Combined Heat & Power (CHP) with Spinning Reserve (SR) are in the sweet spot of maximum energy resiliency at minimum cost.

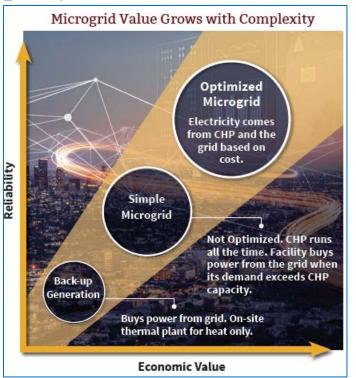

A good reason for a microgrid centered on CHP

- NYU campus CHP (13.4 MW + 90 ,000 lb/hr steam). Energy savings \$5MM/yr.
- CHP is the core of a microgrid that serves 22buildings with power, steam/hot water.
- Value during extreme events? Hurricane Sandy!
 - Total regional losses: \$30-\$50 billion
 - NYSE shutdown loss ~\$7 billion
 - But.... CHP facilities "powered" on.
- Global warming is predicted to increase frequency of severe weather events - an argument favoring resiliency?

Cogeneration re-development brings reliable and sustainable electricity and thermal energy to the New York University campus

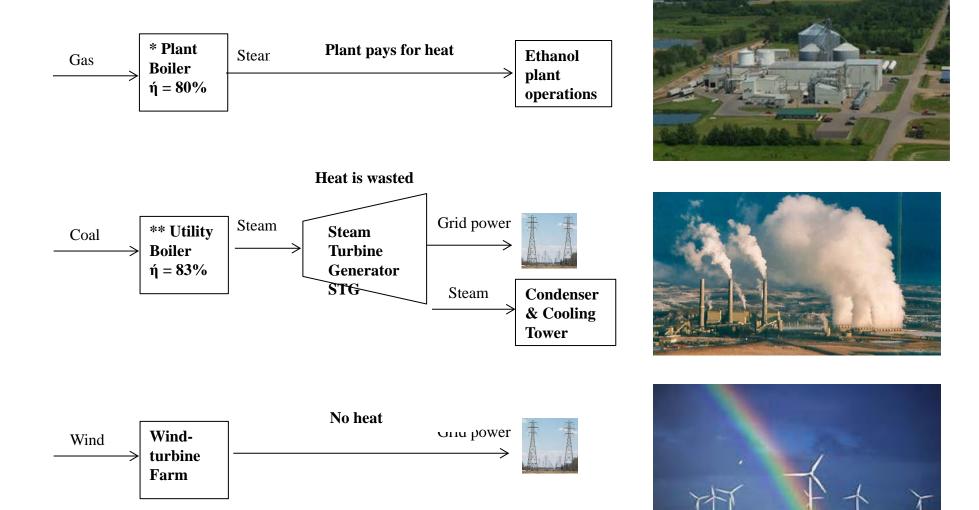



Wind energy is abundant, intermittent and unpredictable

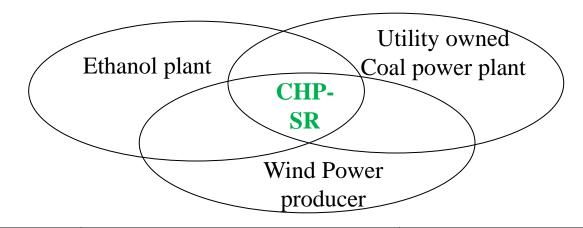

Source: ABB White paper, "Integrating Renewables in Microgrids"

A CHP centered microgrid can rapidly "load follow"

Source: MGK White Paper; "How microgrids can achieve maximum ROI"

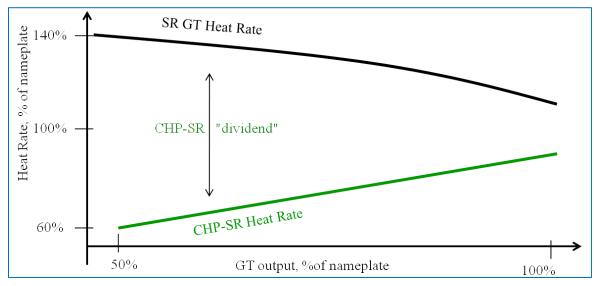

CHARACTERISTICS Resiliency = Reliability + Redundancy

Distributed Generation


BENEFITS

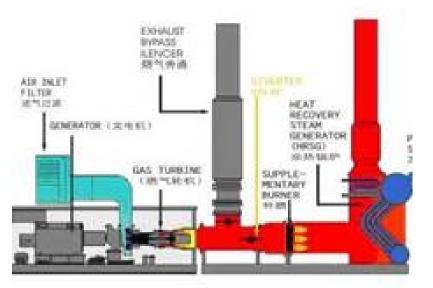
Efficiency - minimize I2R loss Security - grid hardening Scalability – eases resource planning

Economics & thermodynamics at a midwestern corn-toethanol plant, coal power plant and wind turbine farm



CHP-SR mitigates overlapping concerns

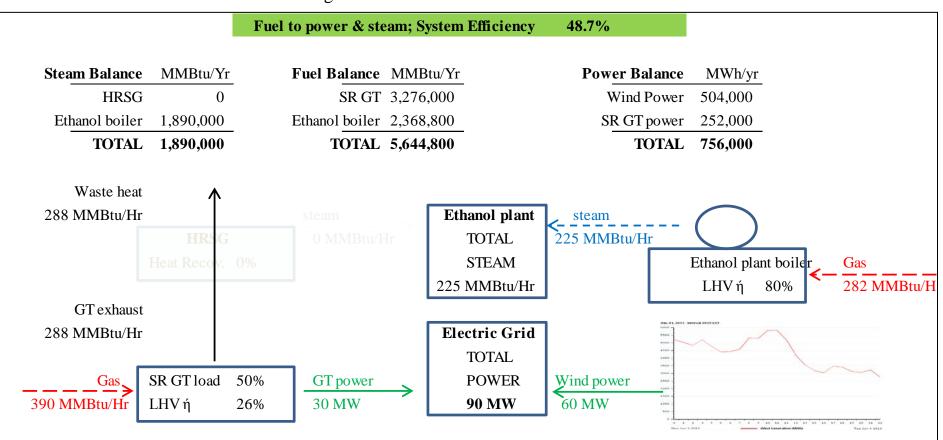
Entity	Concern	Traditional solutions
Ethanol Plant	Cost of steamCost of grid power	Demand reduction measuresPreheat feed-water, improve controls
Coal Utility	 Cost of regulations Cost of coal Cost of O&M 	 <u>Spend</u> on pollution control equipment <u>Shut</u> down coal plant
Wind Power Producer	 Unable to deliver firm capacity Blamed for grid instability Blamed as a "subsidy hog" 	 <u>Spend</u> on simple cycle Gas Turbine (GT) to "firm" wind <u>Spend</u> on fuel + O&M for GT


CHP with Spinning Reserve can economically balance intermittent wind energy allowing steady "load following"

Spinning Reserve Gas Turbine (SR GT) A Gas Turbine that continually varies power output to <u>balance</u> variable wind power generation

CHP with Spinning Reserve (CHP-SR)

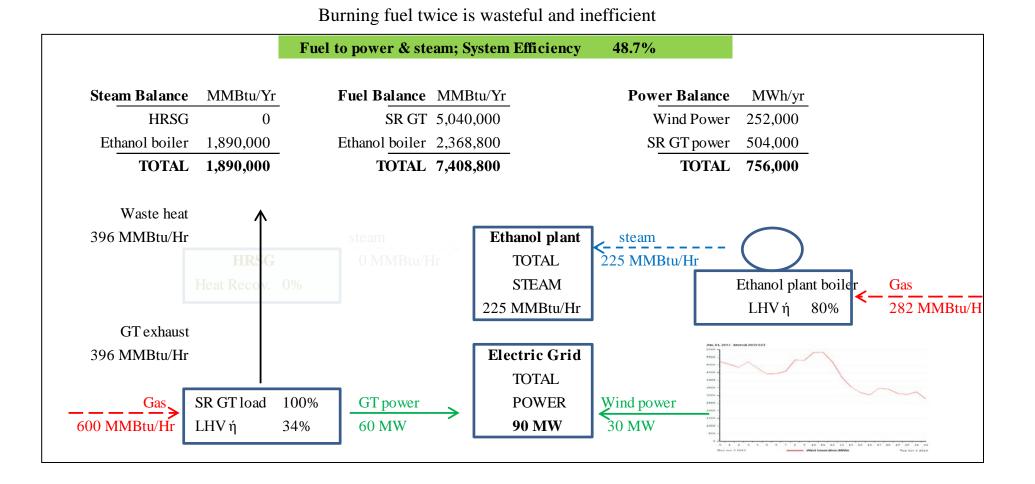
An "electrically oversized" thermally matched CHP system, <u>normally</u> operating at reduced power output



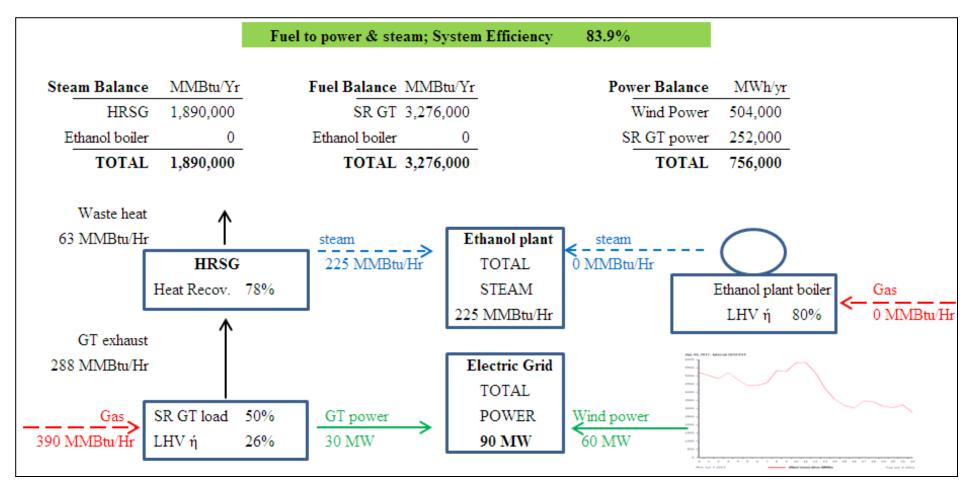
Case	Wind energy	Gas Turbine (GT) load	GT operation to balance wind energy
А	High	Low	Spinning Reserve only
В	Low	High	(simple cycle mode)
С	High	Low	In CHP with Spinning
D	Low	High	Reserve mode

IMAGE: Solar turbines

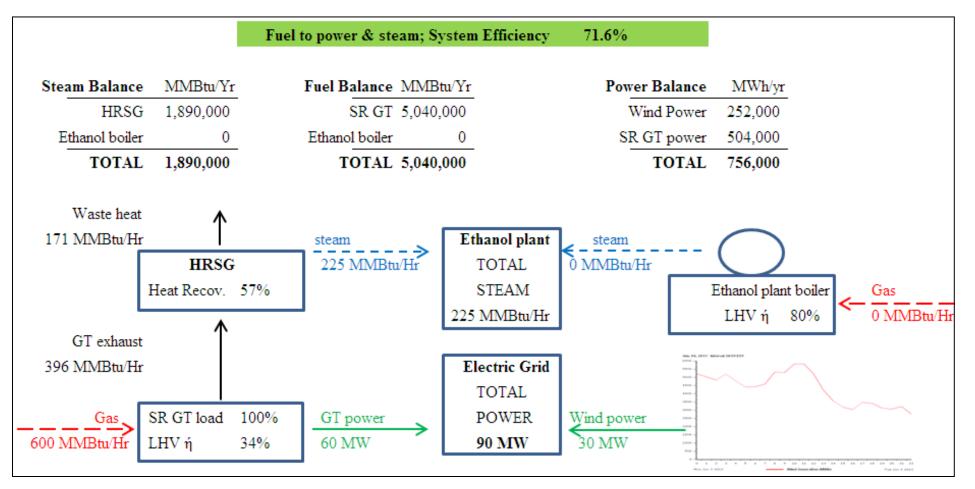
Case A: High wind + low load SR GT


EOLIA

Burning fuel twice is wasteful and inefficient


Case B: Low wind balanced by high load SR GT

EOLIA


Case C: High wind and low load CHP-SR. Waste heat satisfies thermal load.

Burning fuel once and recycling waste heat is efficient and profitable

Case D: Low wind balanced by high load CHP-SR. Waste heat satisfies thermal load.

Burning fuel once and recycling waste heat is efficient and profitable

Economics: operating assumptions

PARAMETER	UNIT	VALUE	COMMENT
System availability	hrs/yr	8,400	Ethanol plant, windmills, SRGT, coal power plant and CHP-SR
of which, duration of			
High wind	hrs/yr	4200	Wind plus SRGT or CHPSR
Low wind	hrs/yr	4200	Wind plus SRGT or CHPSR
Delivered fuel costs			
Natural gas	\$/MMBtu, HHV	\$3.0	
Coal	\$/MMBtu, HHV	\$3.0	\$75 per ton
System non-fuel O&M			
SR GT	\$/MWh	\$5.0	Typical
CHP-SR	\$/MWh	\$10.0	Typical
Coal power plant	\$/MWh	\$15.0	Typical
Ethanol plant boiler	\$/MMBtu steam	\$1.0	Assumed
Utility Coal boiler Heat Rate	MMBtu/MWh	12	Typical for sub-critical Rankine cycle plants
Ethanol plant boiler efficiency	% LHV	80%	Assumed

Economics: CHP-SR slashes operating costs

Ethanol Plant Boiler cost	\$MM/yr		\$/MMBtu steam	
Fuel: Natural gas	\$7.8		\$4.1	
non-fuel O&M	\$1.9		\$1.0	
TOTAL	\$9.7		\$5.1	
		Power cost	*steam credit	Net cost
CHP-SR cost	\$MM/yr	\$/MWh	\$/MWh	\$/MWh
Fuel: Natural gas	\$13.7	\$36.3	(\$20.6)	\$15.7
non-fuel O&M	\$3.8	\$10.0	(\$5.0)	\$5.0
TOTAL	\$17.5	\$46.3	(\$25.6)	\$20.7
		Power cost	*steam credit	Net cost
SR GT cost	\$MM/yr	\$/MWh	\$/MWh	\$/MWh
Fuel: Natural gas	\$13.7	\$36.3	\$0.0	\$36.3
non-fuel O&M	\$1.9	\$5.0	\$0.0	\$5.0
TOTAL	\$15.6	\$41.3	\$0.0	\$41.3
			*steam credit	Net cost
Coal plant cost	\$MM/yr	\$/MWh	\$/MWh	\$/MWh
Fuel: coal	\$13.9	\$36.7	\$0.0	\$36.7
non-fuel O&M	\$5.7	\$15.0	\$0.0	\$15.0
TOTAL	\$19.6	\$51.7	\$0.0	\$51.7

* Steam credit reflects value of displaced Ethanol boiler steam

Economics of a CHP centered microgrid

CHP-SR power is cheaper than wind power with a simple cycle GT

CHP-SR is much cheaper than legacy coal power

- 1. Set objectives & gather data
- 2. Conceptualize alternate configurations: technical & economic appraisal
- 3. Development requires multitasking; seek expert support

Technical:	Configuration, engineering, procurement, construction
Legal:	Structure of contracting entities (LLC, S or C Corp etc)
Commercial:	Contracts for fuel, power, O&M, grants & incentives
Environmental:	Permits
Financial:	Financial models, equity & debt
Risks & Mitigants:	Project Execution Plan (PEP)

RISK	BORNE BY
CHP system CapEx	Project, LLC
CHP system OpEx	Project, LLC
CHP system performance - MW & Kpph	Project, LLC
CHP system availability (Optg hrs)	Project, LLC
CHP stand-by charge	Host, Project LLC
Gas Price change	Host
Power price change	Host
Site / mill risk	Host
Site availability (Optg hrs)	Host

QUESTIONS?

Suresh Jambunathan, Veolia North America Director, Business Development

630-335-4544 Suresh.jambunathan@veolia.com