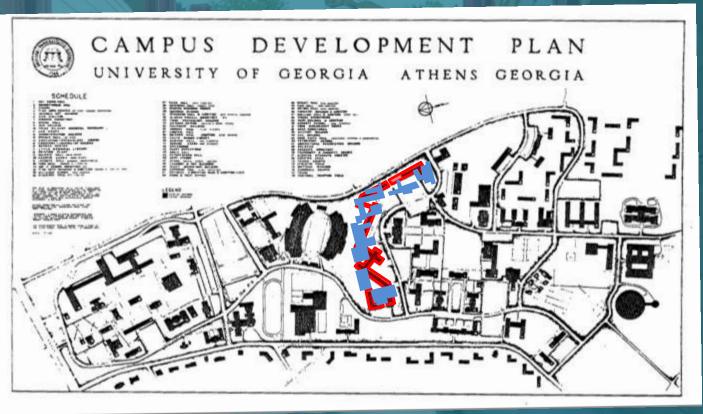
UNIVERSITY OF GEORGIA

MIGRATING FROM UNITARY CHILLED WATER TO CENTRALIZED DISTRIBUTION

VANCE NALL, PE

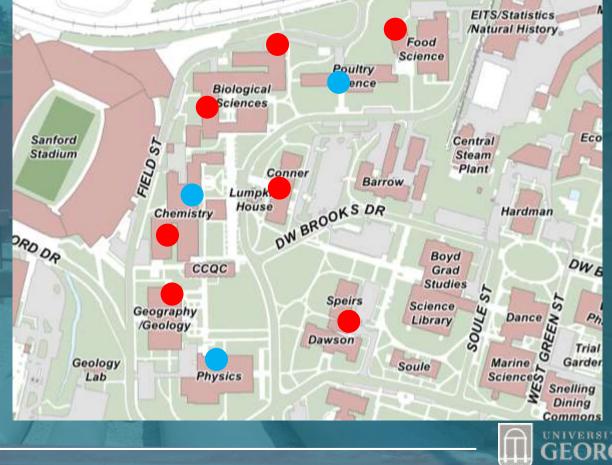
RMF Engineering Reliability. Efficiency. Integrity.

UGA PHYSICAL GROWTH


m

FORGIA

SCIENCE CENTER DEVELOPMENT


 \mathbf{n}

SCIENCE CENTER DEVELOPMENT

 7 Steam Absorption Chillers
 3 Electric Centrifugal Chillers

NEED RELIABILITY AND REDUNDANCY

Modern Science Center

» Research intensive, multi-story classroom and laboratory » Modern architecture – fewer adaptations to hot climate » Single point of failure in Unitary HVAC systems - Downtime 1975 – John Casey proposed Central Chilled Water Alternative was Distributed Chilled Water System » Load Diversity » Allowed for non-critical outages

SYSTEM TYPE COMPARISON

COMPARISON CRITERIA	UNITARY	
FIRST COST	LOW	
MAINTENANCE COST	HIGH	
ENERGY COST	HIGH	
RELIABILITY	LOW	
EASE OF MAINTENANCE	DIFFICULT	
OPERATIONAL COMPLEXITY	AVERAGE	
TOTAL NUMBER OF CHILLERS	HIGH	
ACOUSTIC IMPACT	AVERAGE	
ARCHITECTURAL AND SITE IMPACT	AVERAGE	

SYSTEM TYPE COMPARISON

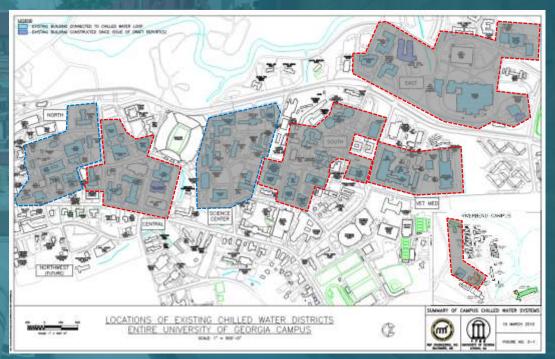
COMPARISON CRITERIA	UNITARY	DISTRIBUTED
FIRST COST	LOW	MEDIUM
MAINTENANCE COST	HIGH	HIGH
ENERGY COST	HIGH	MEDIUM
RELIABILITY	LOW	MEDIUM
EASE OF MAINTENANCE	DIFFICULT	DIFFICULT
OPERATIONAL COMPLEXITY	AVERAGE	DIFFICULT
TOTAL NUMBER OF CHILLERS	HIGH	MEDIUM
ACOUSTIC IMPACT	AVERAGE	AVERAGE
ARCHITECTURAL AND SITE IMPACT	AVERAGE	AVERAGE

COMPARISON CRITERIA	UNITARY	DISTRIBUTED	CENTRAL
FIRST COST	LOW	MEDIUM	HIGH
MAINTENANCE COST	HIGH	HIGH	LOW
ENERGY COST	HIGH	MEDIUM	LOW
RELIABILITY	LOW	MEDIUM	HIGH
EASE OF MAINTENANCE	DIFFICULT	DIFFICULT	EASY
OPERATIONAL COMPLEXITY	AVERAGE	DIFFICULT	SIMPLE
TOTAL NUMBER OF CHILLERS	HIGH	MEDIUM	LOW
ACOUSTIC IMPACT	AVERAGE	AVERAGE	IMPROVED
ARCHITECTURAL AND SITE IMPACT	AVERAGE	AVERAGE	IMPROVED

SYSTEM TYPE COMPARISON

DEVELOPMENT OF DISTRICT LOOPS

 20 years with no redundancy at the Science Center


 O&M working nights to keep chillers online in daytime
 1980 – Study commissioned to investigate solution
 1981 Design and Construction began on Science Center Chilled Water Loop (3-pipe system)

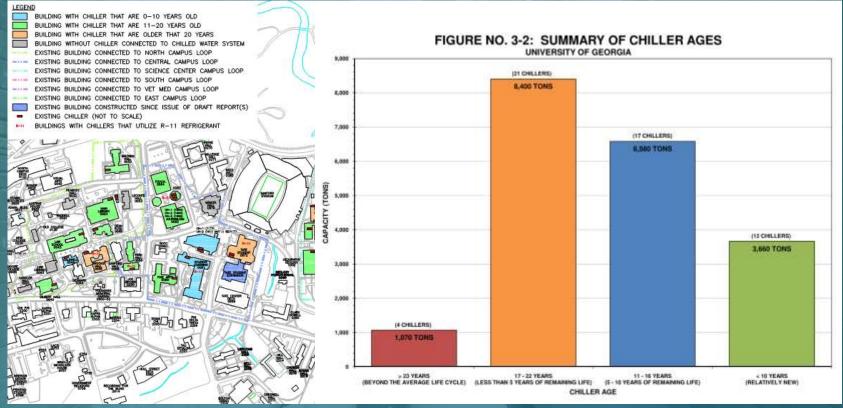
DISTRIBUTED LOOPS 1981 - 2002

1981 Science Center 1985 North Campus 1986 Vet school Loop 1989 South Loop 1998 East Campus Loop 2001 Central Loop 2002 Riverbend Campus

DRIVERS TO CENTRALIZE

The problems with distributed chiller plants:

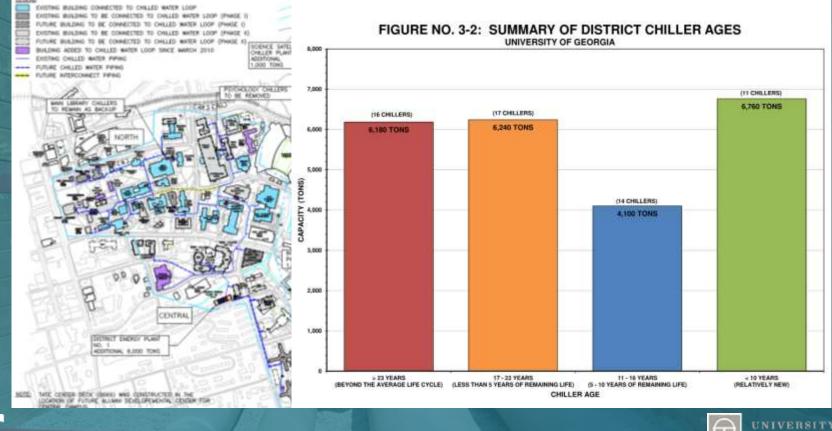
- Multiple smaller chillers maintenance
- Multiple mechanical rooms that could be program space
- » Multiple cooling towers across campus noise and biological concerns
- » Complex controls required for staging
- » Hydraulic challenges
- » Chiller loading inefficiencies



PLANNING & DEVELOPMENT

Master Planning CHW Growth and Development » Tied to architectural master plan » Review of hydraulics and system age Campus wide approach of loading and capacity review Develop Regional Plants Larger, interconnected distribution systems » Relocation of capacity from buildings to plants

TAKING STOCK


TIPPING POINT – SOUTH LOOP

Pharmacy South in Design » No Tower Space South Anchor Plant Designed for cogeneration; absorption chillers inactive » Connected to South Loop (2) 1,000 Ton Centrifugal Chillers First Central Chilled Water Plant - 2008

THE PLAN FOR CENTRAL PLANTS

DEP2 – SOUTH / SCIENCE LOOP

(2) 1,000 Ton Original Building
 (3) 1,000 Ton in New Annex

 (3) 1,000 Tons Future Capacity

 8,000 Tons CHW Capacity
 Plans for future consolidation and retirement of building chillers

TIPPING POINT – CENTRAL LOOP

Tate Center Expansion

Planning Study Performed Plant Identified » Tower Location? Development of NW Precinct » Special Collections Library » Terry College of Business District Plant 1 Identified

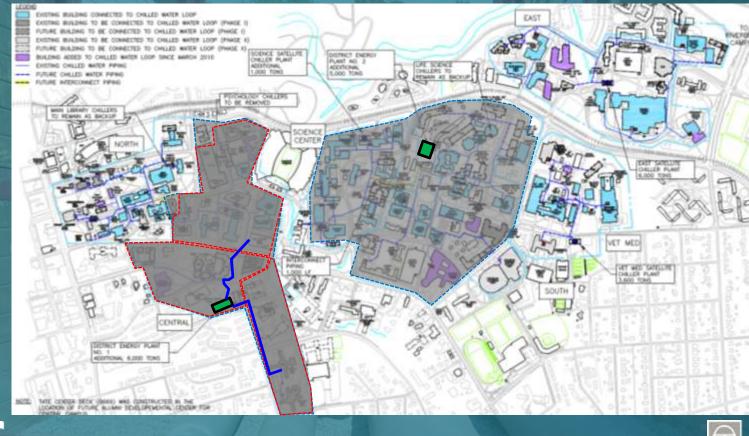
DEP1 – CENTRAL LOOP

Steam to Heating Water

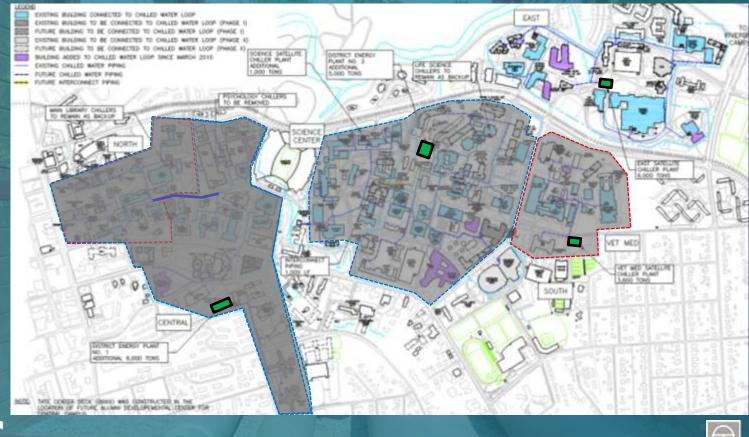
 Low Temperature Hot Water Distribution
 10,000 Tons CHW Capacity

 Accommodate Housing & Dining Upgrades

» Brumby, Russell, Creswell» Bolton Dining Commons



THE PLAN FOR CENTRAL PLANTS


m

GEORGIA

WHERE DO WE GO FROM HERE?

m

TAKEAWAYS

Master Planning / coordination with architectural – Look for Utility corridors, Potential District Energy Plant Sites Don't forget Electrical Planning Use Large buildings as opportunities to create districts Explore Revenue Sources – CHW sales, Ga. Power Energy **Rebate Programs, ESCOs** Took 33 years for UGA to get from Unitary to Central have a plan and start where you can

THANK YOU!

