Presentation to:

INTERNATIONAL DISTRICT ENERGY ASSOCIATION

Cost Effective Ways to Control Cooling Coils and Achieve Design Delta T –
By

Hemant Mehta, P.E.

WM Group Engineers, P.C.

March 7 2018
What the industry has done to improve Delta T?

In 1973 my mentor Erwin Hansen presented a paper to IDEA conference. He stated the following:

B. INCOMPATIBILITY OF CONCEPTS

1. In obtaining design capacity.

 a. Unequal Return Temperatures
 The greatest impact on the cost of a large central chilled water system is provided by the temperature spread between the supply and return, usually termed the Delta T. The Central System Designer seeks to achieve a large Delta T. 14°F or 16°F is common. We have successfully designed for 20°F.
How does delta T affect Power?

- Compressor Energy (Ce):
 \[Ce = m \Delta P \]

- Refrigerant mass flow:
 \[m = \frac{200}{RE} \]

- RE: Refrigerant effect increases as \(\Delta T \) increases.

- Mass flow rate decreases with increase in \(\Delta T \).

- Hence compressor power decreases with increase in \(\Delta T \).

- Low \(\Delta T \) reduces chiller capacity and more chillers need to
What the industry has done to improve Delta T?

Since 1973 there were many products to improve Delta T. Some of the products are:

- BRDG-TNDR or “Bridge Tender”
- Constant flow valve – Griswold
- Pressure Independent valve
- Industrial control valve with good control logic
BRDG-TNDR or “Bridge Tender”

- Popular during late seventies
- System Concept uses valves, flow meters and temperature and pressure transmitters
- Control the Secondary loop temperature
- Control the flow and pressure relationships between the Primary and Secondary loop
- Now the product is out of flavor
Griswold and Pressure Independent valves

- Both valves were invented to cure "So called balancing issues"
- In my judgement manual balancing has done more harm to our industry.
- So path towards dynamic balancing is a plus.
- However, Question is the use of Pressure Independent valves are energy as well as cost efficient?
Pressure Independent Valve

- Pressure Independent Valve provide,
 - Dynamic balancing
 - Requires a minimum of 5 psi pressure drop
Pressure Independent Valve

Conventional control valves must react to both load and pressure changes.

It takes TIME for a conventional control valve actuator to react to pressure changes, with or without a load change.

Conventional Control Valve

Flow varies as differential pressure varies
Pressure Independent Valve (PIV)

Pressure Independent Valves don’t care about pressure fluctuations or their location in the system. Flow is steadied by maintaining constant differential pressure across the control surface.
Let’s Review Coil Performance

- Maintain constant leaving air temperature

<table>
<thead>
<tr>
<th>Season</th>
<th>EAT (deg F)</th>
<th>LAT (deg F)</th>
<th>CHW Flow (gpm)</th>
<th>CHWS (deg F)</th>
<th>CHWR (deg F)</th>
<th>CHW ΔT (deg F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Summer</td>
<td>95.0</td>
<td>78.0</td>
<td>54.6</td>
<td>54.6</td>
<td>206.4</td>
<td>60.0</td>
</tr>
<tr>
<td>Low Summer</td>
<td>85.0</td>
<td>74.0</td>
<td>55.2</td>
<td>55.2</td>
<td>150.0</td>
<td>60.9</td>
</tr>
<tr>
<td>Fall</td>
<td>75.0</td>
<td>68.0</td>
<td>55.3</td>
<td>55.3</td>
<td>100.0</td>
<td>59.9</td>
</tr>
<tr>
<td>Spring</td>
<td>70.0</td>
<td>63.0</td>
<td>55.0</td>
<td>55.0</td>
<td>65.0</td>
<td>58.6</td>
</tr>
</tbody>
</table>

Note 1: Maintain about 55 deg F DB LAT with 44 deg F CHWS temp by reducing CHW flow. This is similar to how the CHW control valve would throttle the CHW flow at part load to maintain a LAT setpoint.
Let’s Review Coil Performance

- Maintain design CHW flow

<table>
<thead>
<tr>
<th>Season</th>
<th>EAT (deg F) DB</th>
<th>EAT (deg F) WB</th>
<th>LAT (deg F) DB</th>
<th>LAT (deg F) WB</th>
<th>CHW Flow (gpm)</th>
<th>CHWS (deg F)</th>
<th>CHWR (deg F)</th>
<th>CHW ΔT (deg F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Summer</td>
<td>95.0</td>
<td>78.0</td>
<td>54.6</td>
<td>54.6</td>
<td>206.4</td>
<td>44.0</td>
<td>60.0</td>
<td>16.0</td>
</tr>
<tr>
<td>Low Summer</td>
<td>85.0</td>
<td>74.0</td>
<td>52.6</td>
<td>52.6</td>
<td>206.4</td>
<td>44.0</td>
<td>57.6</td>
<td>13.6 Note 2</td>
</tr>
<tr>
<td>Fall</td>
<td>75.0</td>
<td>68.0</td>
<td>50.0</td>
<td>50.0</td>
<td>206.4</td>
<td>44.0</td>
<td>54.3</td>
<td>10.3 Note 2</td>
</tr>
<tr>
<td>Spring</td>
<td>70.0</td>
<td>63.0</td>
<td>48.4</td>
<td>48.4</td>
<td>206.4</td>
<td>44.0</td>
<td>51.9</td>
<td>7.9 Note 2</td>
</tr>
</tbody>
</table>

Note 2: Maintain design CHW flow (206.4 gpm). LAT lower than design; hence coil has spare capacity.
WM Group Solution

- No need for PIV at each coil consuming 5 PSI of pressure drop for balancing

- Three components of the system with required pressure drop
 - Plant ~ 45 ft
 - Distribution ~ 100 ft. (Large system)
 - Generation ~ 45 ft

- PIV takes care of the additional distribution pressures for buildings closer to the plant
WM Group Solution

- WM Group solution is to install
 - Control valve at each building entrance and maintain required head for the building.
 - Install good quality control valve at each coil
 - Control valve controls discharge air temperature as well as chilled water return temperature.
 - Vary the discharge air temperature based on outdoor dew point.
 - Remember chilled water is for dehumidification not for cooling
Recommended installation of pressure control valve
Buildings with same pressure drops
Coil Performance Provided by York

- Additional flow hardly makes difference in the air temp, however, reduces Delta T substantially
- Controlling the valve ensures required air temperature with minimum flow

<table>
<thead>
<tr>
<th>CFM</th>
<th>Ent Air Temp DB</th>
<th>Ent Air Temp WB</th>
<th>Dew Point</th>
<th>Lvg Air Temp DB</th>
<th>Lvg Air Temp WB</th>
<th>GPM</th>
<th>Ent water Temp</th>
<th>Lvg water Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000</td>
<td>92</td>
<td>77</td>
<td>71</td>
<td>55</td>
<td>54.73</td>
<td>129.5</td>
<td>42</td>
<td>54</td>
</tr>
<tr>
<td>10000</td>
<td>92</td>
<td>77</td>
<td>71</td>
<td>54.4</td>
<td>54.14</td>
<td>142.5</td>
<td>42</td>
<td>53.1</td>
</tr>
<tr>
<td>10000</td>
<td>92</td>
<td>77</td>
<td>71</td>
<td>53.43</td>
<td>53.18</td>
<td>168.4</td>
<td>42</td>
<td>51.7</td>
</tr>
<tr>
<td>10000</td>
<td>92</td>
<td>77</td>
<td>71</td>
<td>52.69</td>
<td>52.48</td>
<td>194.3</td>
<td>42</td>
<td>50.6</td>
</tr>
</tbody>
</table>
Coil Performance Provided by Trane

<table>
<thead>
<tr>
<th>CFM</th>
<th>Ent Air Temp DB</th>
<th>Ent Air Temp WB</th>
<th>Dew Point</th>
<th>Lvg Air Temp DB</th>
<th>Lvg Air Temp WB</th>
<th>GPM</th>
<th>Ent water Temp</th>
<th>Lvg water Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000</td>
<td>80</td>
<td>67</td>
<td>61</td>
<td>43.06</td>
<td>43.02</td>
<td>134</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>10000</td>
<td>80</td>
<td>67</td>
<td>61</td>
<td>43.58</td>
<td>43.55</td>
<td>119.4</td>
<td>40</td>
<td>51</td>
</tr>
<tr>
<td>10000</td>
<td>80</td>
<td>67</td>
<td>61</td>
<td>44.22</td>
<td>44.18</td>
<td>106.3</td>
<td>40</td>
<td>52</td>
</tr>
<tr>
<td>10000</td>
<td>80</td>
<td>67</td>
<td>61</td>
<td>44.87</td>
<td>44.8</td>
<td>96.1</td>
<td>40</td>
<td>53</td>
</tr>
<tr>
<td>10000</td>
<td>80</td>
<td>67</td>
<td>61</td>
<td>45.54</td>
<td>45.46</td>
<td>87.4</td>
<td>40</td>
<td>54</td>
</tr>
<tr>
<td>10000</td>
<td>80</td>
<td>67</td>
<td>61</td>
<td>46.35</td>
<td>46.25</td>
<td>78.6</td>
<td>40</td>
<td>55</td>
</tr>
<tr>
<td>10000</td>
<td>80</td>
<td>67</td>
<td>61</td>
<td>47.05</td>
<td>46.95</td>
<td>72.1</td>
<td>40</td>
<td>56</td>
</tr>
<tr>
<td>10000</td>
<td>80</td>
<td>67</td>
<td>61</td>
<td>47.87</td>
<td>47.76</td>
<td>65.5</td>
<td>40</td>
<td>57</td>
</tr>
<tr>
<td>10000</td>
<td>80</td>
<td>67</td>
<td>61</td>
<td>48.69</td>
<td>48.57</td>
<td>59.7</td>
<td>40</td>
<td>58</td>
</tr>
<tr>
<td>10000</td>
<td>80</td>
<td>67</td>
<td>61</td>
<td>48.99</td>
<td>48.58</td>
<td>62.5</td>
<td>41</td>
<td>58</td>
</tr>
<tr>
<td>10000</td>
<td>80</td>
<td>67</td>
<td>61</td>
<td>49.36</td>
<td>49.24</td>
<td>65.5</td>
<td>42</td>
<td>58</td>
</tr>
<tr>
<td>10000</td>
<td>80</td>
<td>67</td>
<td>61</td>
<td>49.77</td>
<td>49.65</td>
<td>68.4</td>
<td>43</td>
<td>58</td>
</tr>
<tr>
<td>10000</td>
<td>80</td>
<td>67</td>
<td>61</td>
<td>50.24</td>
<td>50.11</td>
<td>71.3</td>
<td>44</td>
<td>58</td>
</tr>
<tr>
<td>10000</td>
<td>80</td>
<td>67</td>
<td>61</td>
<td>50.62</td>
<td>50.49</td>
<td>75.7</td>
<td>45</td>
<td>58</td>
</tr>
<tr>
<td>10000</td>
<td>80</td>
<td>67</td>
<td>61</td>
<td>51.08</td>
<td>50.94</td>
<td>80.1</td>
<td>46</td>
<td>58</td>
</tr>
<tr>
<td>10000</td>
<td>80</td>
<td>67</td>
<td>61</td>
<td>51.59</td>
<td>51.45</td>
<td>84.5</td>
<td>47</td>
<td>58</td>
</tr>
<tr>
<td>10000</td>
<td>80</td>
<td>67</td>
<td>61</td>
<td>52.08</td>
<td>51.93</td>
<td>90.3</td>
<td>48</td>
<td>58</td>
</tr>
</tbody>
</table>
Great Delta T can be achieved by

- Installing one pressure control valve at each building rather than for all coils
- Good quality control valves at coils
- Controlling discharge air temperature as well as discharge chilled water return temperature
- Further energy and delta T improvement by raising discharge supply air temperature based on outdoor Dew Point.
- Dew Point control also minimizes reheat coil requirements
Thank You

Hemant Mehta, P.E.
President

WMGroup Engineers, P.C.
(646) 827-6400

hmehta@wmgroupeng.com
www.wmgroupeng.com