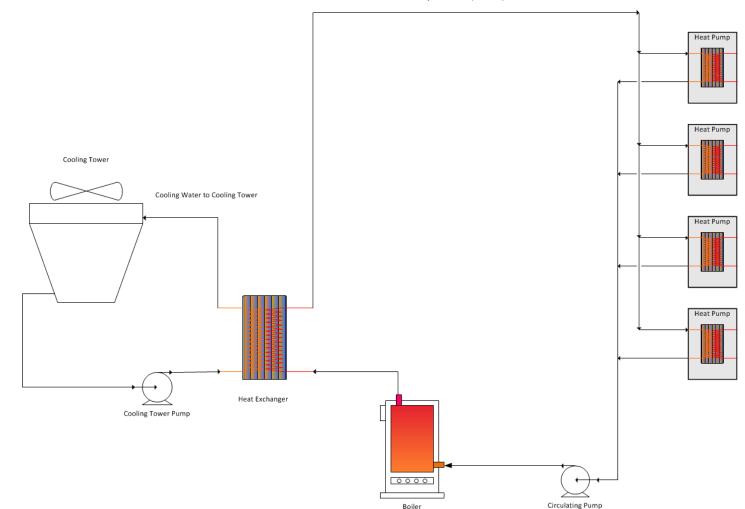


District Energy and Water Source Heat Pumps


Issues and Opportunities

Michael J. Marr, P.E., CEng Veolia North America

Water Source Heat Pumps – The Challenge

- Developers like Water Source Heat Pumps (WSHP)
- District Cooling systems see them as a competitor to the traditional four-pipe system
- Using chilled water (CHW) to cool the condenser loop can have benefits for the developer, the building operator, and the district cooling supplier
- It is a difficult sale, so...
- A comprehensive approach must be taken

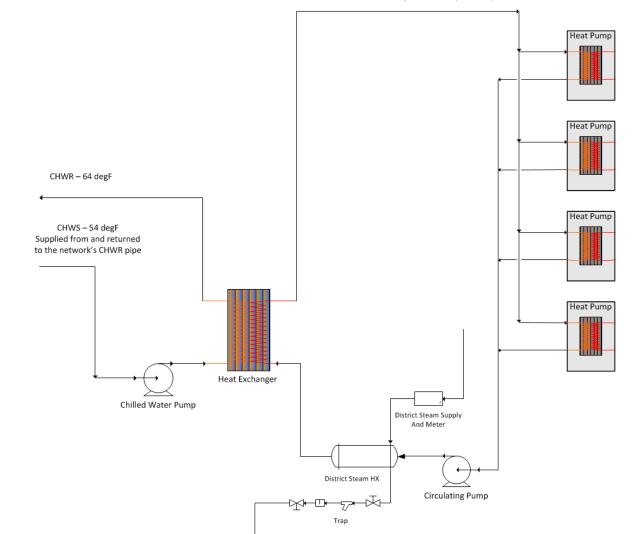
The Technology – Typical WSHP

Heat Rejection/Absorption Loop

Developer's Viewpoint

• Pros:

- Easy to install in new construction
- Relatively easy to install in retrofits/rehabs
- More efficient than air cooled heat pumps
- More efficient than split systems
- Better individual control of comfort
- Most of cost of heating/cooling is paid through the rental/condo unit's electric meter


• Cons:

- Requires a boiler to heat the condenser loop
- Requires a cooling tower to cool the loop
- These use valuable space that could be used for additional revenue generation

District Energy Viewpoint

- We would much rather have the customer install a four pipe system
- But, four pipe systems are expensive to install, especially in retrofit/rehab situations
- So, what can we do?
 - Cool condenser loop with chilled water, to eliminate the cooling tower
 - Heat condenser loop with steam or hot water, eliminating the boiler
- What else can we do?
 - \circ Use chilled water from the return side of the system, to improve central plant ΔT
 - Use the ability to cool the condenser loop to lower than 85 °F to improve the efficiency of the WSHP units

WSHP with District Energy

Heat Rejection/Absorption Loop

Efficiency Benefits for Customer

Assumptions			
Performance Data from Trane EXH012 water			
# Units:	1,200.00		
Loop Temperature	55	86	degF
gpm per unit	2.90	2.90	gpm
Total Cooling kbtuh	12.98	11.90	kbtuh
Total Heating kbtuh	12.67	17.24	kbtuh
Cooling compressor power - kW	0.51	0.82	kW
Heating compressor power - kW	0.80	0.88	kW
Cooling kW/Ton	0.48	0.83	kW/Ton
Heating kW/mbh	0.06	0.05	kW/mbh
DeltaP per floor (ft)	4.50	4.10	ft
Total DeltaP (ft)	44.82	44.42	ft
Circ Pump HP	52.52	52.05	HP
Rejected Heat - Cooling, kbtuh	14.73	14.53	kbtuh
Absorbed Heat - Heating, kbtuh	9.95	14.25	kbtuh
CT Pump HP @ 3 gpm/ton and 50 ft head		60.61	HP
CT Fan kW		111.90	kW
Total Demand:	52.52	224.55	kW

Example – Western USA

Customer kWh Saved:	1,601,029
Veolia CHW Sales, Ton-Hrs	3,019,536
Total kWh Consumed	1,677,270
Circulating Pump kWh	343,192
Heat rejected to Veolia, kbtu	36,234,432
Heat added by Boiler, kbtu	-
Heat Absorbed from Loop, kbtu	609,978
Heat Rejected to Loop, kbtu	36,844,410
Total HP kWh	1,334,598
Heating kWh @ 55 Loop Temp	48,921
Cooling kWh @ 55 Loop Temp	1,285,677
Heating kWh @ 86 Loop Temp	39,422
Cooling kWh @ 86 Loop Temp	2,242,686
CC CHW	
Total kWh Consumed	3,278,299
Circulating Pump kWh	340,129
CT Pump kWh @ 25ft Head	396,058
Cooling Tower Fan kWh @ 0.1 kWh/ton-hr	260,004
Heat rejected to cooling tower, kbtu	39,000,591
Heat added by Boiler, kbtu	-
Heat Absorbed from Loop, kbtu	642,015
Heat Rejected to Loop, kbtu	39,642,607
Total HP kWh	2,282,108
Heating kWh @ 86 Loop Temp	39,422
Cooling kWh @ 86 Loop Temp	2,242,686
Self Perform	
	770,720
Customer Heating kbtu	776,726
Customer Ton-brs	
Customer Ton-hrs	Totals 2,705,592

Customer O&M Benefits

- These costs will be eliminated or substantially reduced:
 - Repair and replace Cooling Tower
 - Cooling Tower PM
 - Water treatment PM
 - Chemicals
 - Pump PM
 - Pump Replacement
 - Make-up to Cooling Tower
 - Sewer Charges

ΔT Improvement

Plant Peak:	10,000	tons
Design DeltaT:	16	degF
System Flow Rate:	15,000	gpm
WSHP Customer Tons:	1,200	tons
Customer Design DeltaT:	10	degF
Customer Flow Rate:	2,880	gpm
Actual Plant DeltaT:	12	degF
Actual System Flow Rate:	20,000	gpm
CHWST to Customer:	54	degF
CHWRT from Customer:	64	degF
Blended CHWRT after Customer:	55.44	degF
New system Flow Rate:	17,857	gpm
HP Savings at 150 psig:	249	HP
Savings at \$0.10/kWh	\$ 46,507	
Savings/ton-hr:	\$ 0.02	

Economics

Potential Revenue Additions	\$ 90,000
Capital Plant Amortization	\$ 305,689
O&M Savings	\$ 88,315
Electric Savings @ \$0.10/kWh	\$ 160,103
TOTAL	\$ 484,005
CHW purchases @ \$0.15/ton-hr	\$ 452,930
Less Credit for deltaT improvement:	\$ 46,507
Net Cost of CHW to customer:	\$ 406,424
NET savings to Customer:	\$ 77,581

Conclusions

- It's a difficult sale!
- Can be good for all parties
- Need to price the product creatively by sharing operational benefits with customer
- Definite life cycle benefits for the customer
- Definite operational and efficiency benefits for the DE Plant.

QUESTIONS?