Supporting A Fast Track Mission-Critical Campus Healthcare Expansion

JUAN M. ONTIVEROS, P.E.

AVP – UTILITIES, ENERGY AND FACILITIES MANAGEMENT
New Campus Master Plan
5.5 million SF Completed June 2012
New Medical School

Master Plan
Completed April 2013

Phase 1
1 million square feet

Phase 2
- 1,200,000 square feet in 5 to 10 years

Table 2a. Dell Medical School Program

<table>
<thead>
<tr>
<th>PROGRAM ELEMENT</th>
<th>GSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education and Administration Building</td>
<td>75,000</td>
</tr>
<tr>
<td>Research Building and Vivarium</td>
<td>240,000</td>
</tr>
<tr>
<td>MOB Phase 1</td>
<td>200,000</td>
</tr>
<tr>
<td>Parking Structure (1,000 spaces)</td>
<td>325,000</td>
</tr>
<tr>
<td>Intra-Professional Education (IPE)*</td>
<td>+/- 50,000</td>
</tr>
</tbody>
</table>

*Not included in Phase 1 planning budget.

Table 2b. Teaching Hospital and MOB Program

<table>
<thead>
<tr>
<th>PROGRAM ELEMENT</th>
<th>GSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital (220 beds)</td>
<td>480,000</td>
</tr>
</tbody>
</table>
Methodology

Develop Utility Master Plan in 3 months

• Used building type & actual metered energy use per GSF for existing campus buildings
 • Estimate annual & peak energy & water needs
 • Determine plant total capacity & rate impact
• Used Termis chilled water and steam model
 • Size and plan distribution system
• Include build out of 2.2 million SF for Phase 2 & 3
• Include 1 million more new square feet on the campus
Over Arching Objectives

• New chilling station
 • Capacity & efficiency enough to prevent negative impact to campus
 • Expandable to address subsequent phases of district
 • Continue philosophy of loops & redundant service

• What is impact of other new space?

• Avoid power plant expansion

• Avoid conflict between Peak Steam and Peak Power
Projected Loads

• Main Campus Load Growth
 • 6,000 Tons

• Phase I
 • Dell Medical School;
 • 7,000 Tons, 6 MW, 30,000 lbs/hr

• Hospital
 • 1,700 Tons, 30,000 lbs/hr

• Phase II - Medical School
 • 5,100 Tons, 4MW, 25,000 lbs/hr
Capacity

- **Chilled Water System**
 - 15,000 tons chilled water
 - 6 - 2,500 ton chillers
 - 5°F approach cooling tower
 - Expandable to 20k tons
 - 5.5 million gallon TES
 - Stratified Water
 - Dedicated pumping
 - More than 5 MW load shifting capacity
Capacity

- Chilled Water
 - Proven Existing System
 - Tunnel + Direct Buried
 - Station Redundancy

- Heating Water
 - New System
 - Fuel Diversity
 - Geographic Diversity

- Single Points of Failure
 - N+1 pumps and tower cells
 - Looped Piping
 - Main tie main switchgear
Resiliency

• Multiple Water Sources
 • Recovered
 • Reclaimed
 • Irrigation
 • Domestic

• O&M Considerations
 • Bridge crane and monorails
 • Standardize components
 • Catwalks

• PLC Control Systems
 • Programming for failure
Efficiency

- Water
 - Recovered Water System
 - Heat Pump Chiller
 - 17,000,000 gal/year + Chemicals
- Gas
 - Heat Pump Chillers
 - $287,000/year
- Electricity
 - Optimization
 - Maintain the “Sweet Spot”
 - Pumping in harmony
 - Up to 25,000,000 kWh/year savings vs. conventional plant
SUMMARY
CS7 / TES-2 BENEFITS

- Lower campus annual kW/ton
 - 4 years at .64 kW/ton annual average
- New plant expected at .55 KW/ton
- Offset 6 MW of peak demand
- Avoids additional CHP capacity need
- Improves campus hydraulics
- Off-loads plants in need of renewal
- Room for expansion
 - 5,000 tons more
 - 1,800 tons / 30 MMBtu with HPC’s
 - 12 MMBtu via boiler