Speed to Market

Fast Track Project Implementation

Blake Ellis, PE, DBIA, LEED AP
Principal, OnSite Energy & Power
bellis@burnsmcd.com
- Introduction / Overview
- Why the Need for Speed?
- How Do I Go Fast?
 - Design – Bid – Build with Early Procurement
 - Construction Manager
 (CM at Risk or CM Agent)
 - Design – Build
- What is Different? / How Do I Do It?
 - Compare and contrast the methods
- Case Studies
 - Purdue University – Chiller Replacement
 - Enwave – Biomedical District Steam Plant
 - Airbus – Powerhouse
- Questions & Answers
Why the Need for Speed?
Why the Need for Speed?

• **Seasonal Business**
 – Need to meet peak demands
 – Winter (heating demand) and Summer (cooling demand) come every year
 – Shortening a project by a few months can add a year of “service”

• **Not Enough Implementation Time**
 – Equipment failure
 – New customer needs load quickly
 – Delayed decision to execute the project

• **Minimize Plant Disruption**

• **It’s Fun to Go Fast**
How Do I Go Fast?
&
What is Different?
How Do I Go Fast?
Early Equipment Procurement

- **How Do I Do It?**
 - Specification developed for long-lead items
 - Owner reviews bids and places equipment order
 - Shop drawings for equipment come to owner
 - Delivery of equipment can be to Owner or Contractor

- **What is Different?**
 - Can drastically reduce schedule
 - Provides early detailed equipment information
 - Adds to the contracts to administer
 - Owner is responsible for coordination between contracts
 - Scope
 - Delivery
 - Warranty
• Two major types:
 – Construction Manager Agent
 – Construction Manager at Risk

• Procured via:
 – Request for Qualifications (RFQ)
 – Request for Proposal (RFP)
 – Other method

• Responses can include:
 – Construction fee
 – Pre-construction services
 – General conditions
 – Staffing plan
 – Schedule
 – Change order markup fee
DBB vs. CM & Design-Build

What is Different?

Design & Bid
- No Project Contractor Involvement

Construction

- Design-Bid-Build

Overlapped design & construction

Design & Bid

- Extensive Contractor Involvement Possible

Construction

- Design-Build CM-at-Risk
D-B-B vs. Design-Build

What is Different?

Design-Build Utilizing Open Book Approach

- Scope & Criteria
- Prelim Design
- Final Design
- Pre-Construction Services
- Construction

GMP Established

Time & Dollars Saved

Traditional Design-Bid-Build Approach

- Scope & Criteria
- Prelim Design
- Final Design
- Bid
- Construction

Final Cost Determined

If project over budget—Redesign and Re-bid
Design-Build

How Do I Do It?

Usually Best Value or Qualifications

- **Direct Design-Build**
 - -10% to 5%

- **Design Criteria**
 - 5% to 20%

Typically Low-Bid Procurement

- **Preliminary Engineering**
 - Design-Build
 - 20% to 35%

- **Best Value (BVS) with Technical & Price Emphasis**
- **Best Value (BVS) with Low Bid Emphasis**

- **Design/Draw-Build**
 - 35% Design or Greater
Design-Build
How Do I Do It?

Documents less than 100% complete

RFP
Tech Proposal
Price Proposal
= Contract
Plans
Specs
Project Delivery Methods

CII/Penn State University Study

<table>
<thead>
<tr>
<th>Metric</th>
<th>DB vs. DBB</th>
<th>CM@R vs. DBB</th>
<th>DB vs. CM@R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Cost</td>
<td>6.1% lower</td>
<td>1.6% lower</td>
<td>4.5% lower</td>
</tr>
<tr>
<td>Construction Speed</td>
<td>12% faster</td>
<td>5.8% faster</td>
<td>7% faster</td>
</tr>
<tr>
<td>Delivery Speed</td>
<td>33.5% faster</td>
<td>13.3% faster</td>
<td>23.5% faster</td>
</tr>
<tr>
<td>Cost Growth</td>
<td>5.2% less</td>
<td>7.8% more</td>
<td>12.6% less</td>
</tr>
<tr>
<td>Schedule Growth</td>
<td>11.4% less</td>
<td>9.2% less</td>
<td>2.2% less</td>
</tr>
</tbody>
</table>
Case Studies
Purdue University - Chiller Replacement

Early Equipment Procurement

• Project Description
 – Remove 6,250 ton steam turbine
 – Install two 3,700 ton chillers
 – Increase total capacity by 1,150 tons
 – Increase firm capacity by 2,400 tons

• Schedule
 – Design Start: October 2013
 – Construction Start: September 2014
 – Completion: May 2015

• Project Attributes
 – Early chiller procurement
 – 8,000 ton temporary chiller connection
 – Meet demand for:
 • Temporary Connections May 2014
 • Permanent Capacity May 2015
Purdue University - Chiller Replacement

Early Equipment Procurement

- **Schedule with D-B-B**
 - May 2014: Issue for Bid
 - July/Aug 2014: Approval from Board of Trustees (Award to Contractor)
 - Sept/Oct 2014: Approval of chiller shop drawings / place order
 - Jan/Feb 2015: Chiller Delivery
 - Mar/Apr 2015: Installation
 - May 2015: Commissioning
 - June 2015: Project Complete

- **Schedule with Early Procurement**
 - Dec 2013: Chiller bids received
 - May 2014: Issue Construction for Bid / Chiller order place
 - July/Aug 2014: Approval from Board of Trustees (Award to Contractor)
 - Fall 2015: Chiller Delivery
 - Mar/April 2015: Commissioning
 - April/May 2015: Project Complete

2 months saved
Enwave - Biomedical District Steam Plant

Design-Build

• Project Description
 – 210,000 PPH steam
 – 900 kW generation

• Schedule
 – Start: October 2013
 – Completion: January 2015

• Project Attributes
 – Designed to accommodate 20 foot flood waters
 – Precast Concrete façade designed to withstand 150 mph winds
 – 7 days stand alone island operation
Enwave - Biomedical District Steam Plant

Design-Build

• Process
 – Originally Design-Bid-Build
 – Converted to D-B near the end of design
 – D-B-B schedule and D-B project schedule are nearly identical

• Lessons Learned
 – Earlier conversion to design-build decreases construction schedule
 – D-B contract has allowed for incorporation of changes during construction w/o modifying the schedule

Limited time saved
Airbus – Powerhouse
Design-Build

• Project
 – New plant to produce A320 in US
 – Located in Mobile, Alabama

• Schedule
 – RFQ Dec 2012
 – RFP Issued Jan 2013
 – Project Complete July 2014

• Procurement Process
 – Initially DBOOM
 – Revised to DBOM (own was removed)
 – Design-Build Construction
 • Performance Specifications from Airbus
 • Lump sum GMP to plant operator
 • Mechanical and electrical sub-contractors selected at RFQ stage
Airbus – Powerhouse

Design-Build

• Project Attributes
 – LEED Gold Certification (LEED Silver target)
 – CUP expands with manufacturing
 – Tempered equipment bays
 – Closed automatic transition switchgear and controls

• Capacities
 – 4,200 tons chilled water
 – 44 MMBH heating water production
 – 2000 SCFM compressed air
 – Emergency Standby Power

• Schedule
 – Awarded June 2013
 – Completion July 2014
• **Schedule Savings**
 - D-B-B About 18-20 months
 - D-B 13 months

 5-7 months saved!

• **Best Practices**
 - Performance based requirements from Airbus
 - Early phase charrette critically important with all stakeholders
 - Early MEP sub-contractor involvement
 - M&E sub communication with engineers
 - Local City of Mobile permit coordinator
Summary

• There are Many Reasons a Project is Accelerated

• Three Methods to Accelerate
 – Early equipment procurement
 – Construction manager
 – Design-Build

• All options have pros/cons

• Design-build is the fastest

• The right solution is different for every project

Other Options:
 – Phased Construction Contracts
 – Commissioning Agents
 – Permitting Agent (expeditor)
Questions & Answers
Thank You!

Blake Ellis, PE, DBIA, LEED AP
Principal
Burns & McDonnell
OnSite Energy & Power
816-822-3332
bellis@burnsmcd.com