Speed to Market

Fast Track Project Implementation

Blake Ellis, PE, DBIA, LEED AP Principal, *On*Site Energy & Power bellis@burnsmcd.com

Agenda/ Overview

- Introduction / Overview
- Why the Need for Speed?

• How Do I Go Fast?

- Design Bid Build with Early Procurement
- Construction Manager
 (CM at Risk or CM Agent)
- Design Build

• What is Different? / How Do I Do It?

Compare and contrast the methods

• Case Studies

- Purdue University Chiller Replacement
- Enwave Biomedical District Steam Plant
- Airbus Powerhouse

Questions & Answers

Why the Need for Speed?

Why the Need for Speed? -

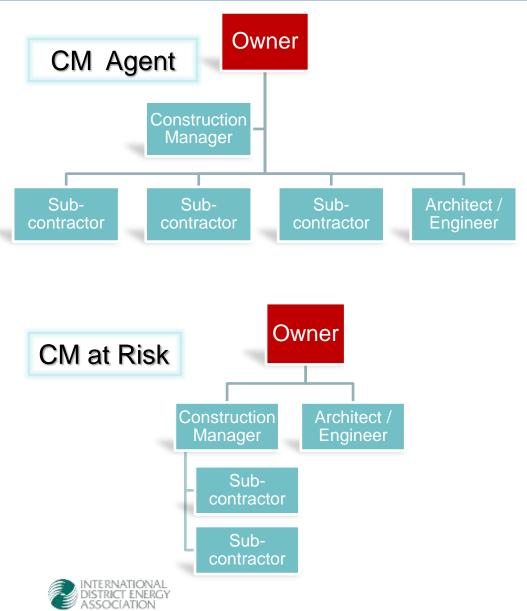
- Seasonal Business
 - Need to meet peak demands
 - Winter (heating demand) and Summer (cooling demand) come every year
 - Shortening a project by a few months can add a year of "service"
- Not Enough Implementation Time
 - Equipment failure
 - New customer needs load quickly
 - Delayed decision to execute the project
- Minimize Plant Disruption
- It's Fun to Go Fast

How Do I Go Fast? & What is Different?

How Do I Go Fast? —

Early Equipment Procurement

- How Do I Do It?
 - Specification developed for long-lead items
 - Owner reviews bids and places equipment order
 - Shop drawings for equipment come to owner
 - Delivery of equipment can be to Owner or Contractor
- What is Different?
 - Can drastically reduce schedule
 - Provides early detailed equipment information
 - Adds to the contracts to administer
 - Owner is responsible for coordination between contracts
 - Scope
 - Delivery
 - Warranty



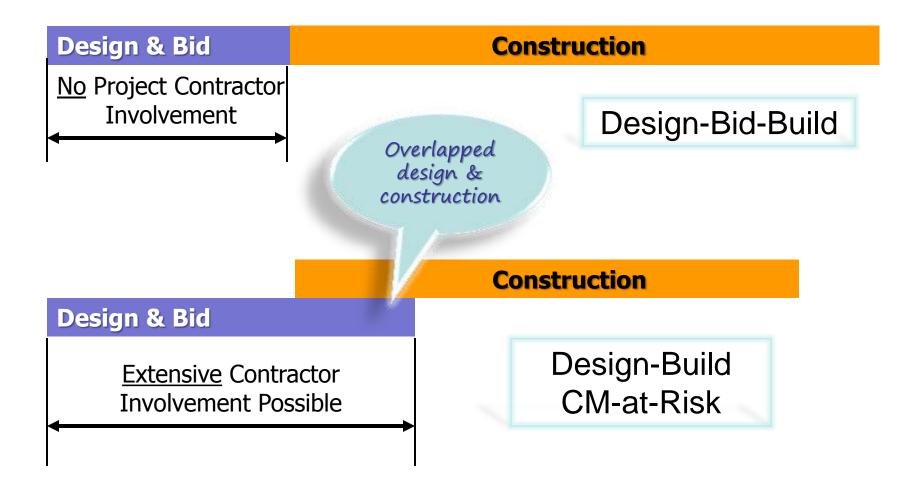
Construction Manager –

How Do I Do It?

- Two major types:
 - Construction Manager Agent
 - Construction Manager at Risk

Procured via:

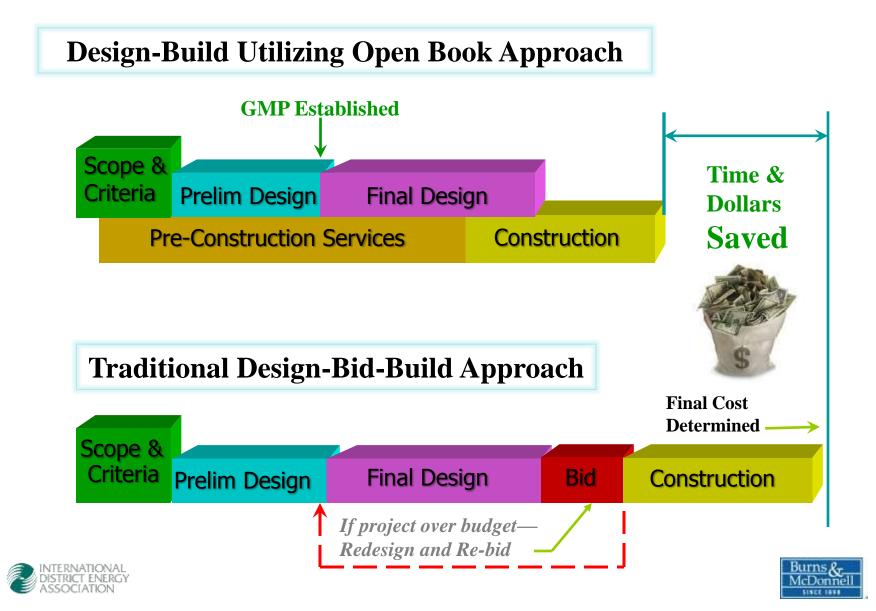
- Request for Qualifications (RFQ)
- Request for Proposal (RFP)
- Other method

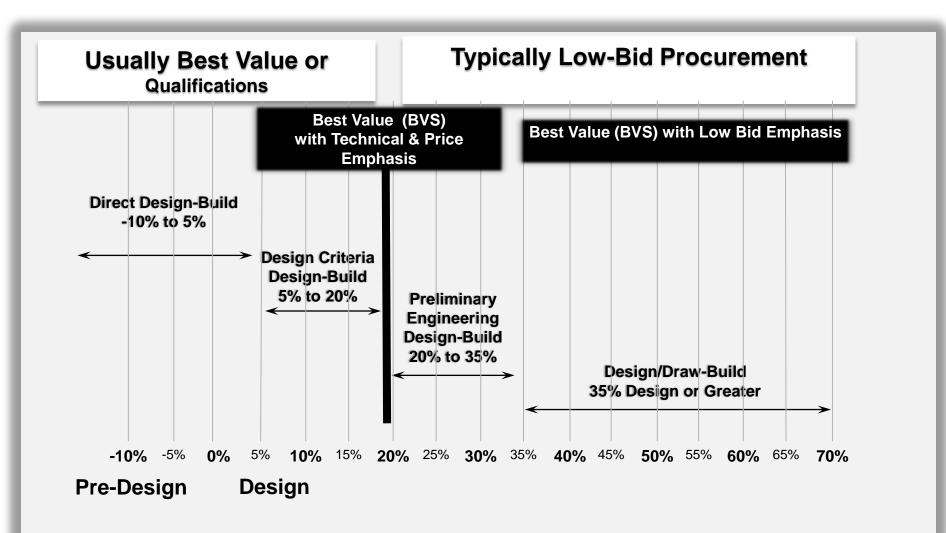

Responses can include:

- Construction fee
- Pre-construction services
- General conditions
- Staffing plan
- Schedule
- Change order markup fee

DBB vs. CM & Design-Build

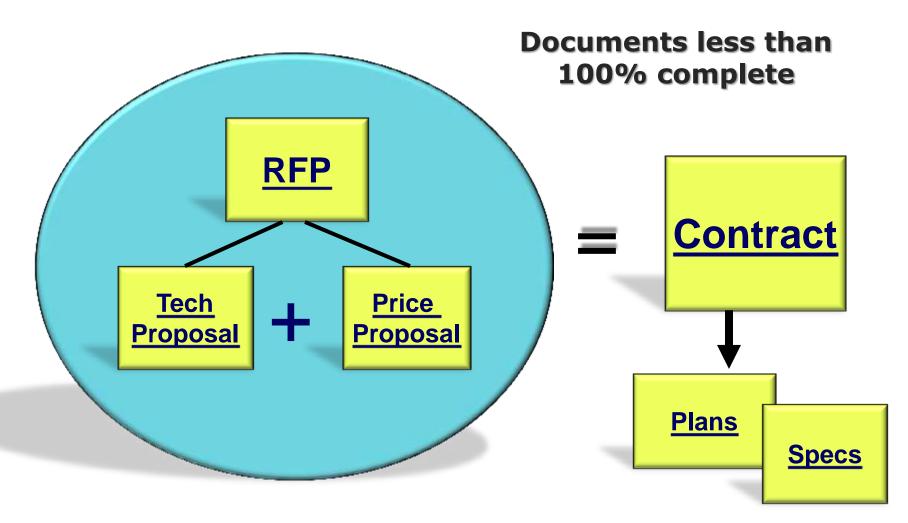
What is Different?




D-B-B vs. Design-Build

What is Different?

Design-Build


How Do I Do It?

Design-Build How Do I Do It?

Project Delivery Methods -

CII/Penn State University Study

Metric	DB vs. DBB	CM@R vs. DBB	DB vs. CM@R
Unit Cost	6.1% lower	1.6% lower	4.5% lower
Construction Speed	12% faster	5.8% faster	7% faster
Delivery Speed	33.5% faster	13.3% faster	23.5% faster
Cost Growth	5.2% less	7.8% more	12.6% less
Schedule Growth	11.4% less	9.2% less	2.2% less

Case Studies

Purdue University - Chiller Replacement

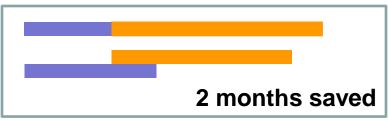
Early Equipment Procurement

- Project Description
 - Remove 6,250 ton steam turbine
 - Install two 3,700 ton chillers
 - Increase total capacity by 1,150 tons
 - Increase firm capacity by 2,400 tons
- Schedule
 - Design Start: October 2013
 - Construction Start: September 2014
 - Completion: May 2015
- Project Attributes
 - Early chiller procurement
 - 8,000 ton temporary chiller connection
 - Meet demand for:
 - Temporary Connections May 2014
 - Permanent Capacity May 2015

Purdue University - Chiller Replacement

Early Equipment Procurement

• Schedule with D-B-B


- May 2014 Issue for Bid
- July/Aug 2014 Approval from Board of Trustees (Award to Contractor)
- Sept/Oct 2014 Approval of chiller shop drawings / place order
- Jan/Feb 2015 Chiller Delivery
- Mar/Apr 2015 Installation
- May 2015 Commissioning
- June 2015 Project Complete

- Dec 2013 Chiller bids received
 - May 2014 Issue Construction for Bid / Chiller order place

Project Complete

- July/Aug 2014 Approval from Board of Trustees (Award to Contractor)
- Fall 2015 Chiller Delivery
- Mar/April 2015 Commissioning
- April/May 2015

—

Enwave - Biomedical District Steam Plant

Design-Build

- Project Description
 - 210,000 PPH steam
 - 900 kW generation
- Schedule
 - Start:

October 2013

- Completion:

January 2015

- Project Attributes
 - Designed to accommodate 20 foot flood waters
 - Precast Concrete façade designed to withstand 150 mph winds
 - 7 days stand alone island operation

Enwave - Biomedical District Steam Plant

Design-Build

- Process
 - Originally Design-Bid-Build
 - Converted to D-B near the end of design
 - D-B-B schedule and D-B project schedule are nearly identical
- Lessons Learned
 - Earlier conversion to design-build decreases construction schedule
 - D-B contract has allowed for incorporation of changes during construction w/o modifying the schedule

Airbus – Powerhouse

Design-Build

- Project
 - New plant to produce A320 in US
 - Located in Mobile, Alabama
- Schedule
 - RFQ Dec 2012
 - RFP Issued Jan 2013
 - Project Complete July 2014

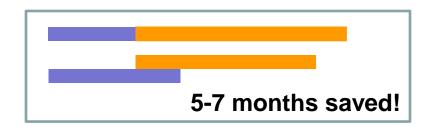
- Procurement Process
 - Initially DBOOM
 - Revised to DBOM (own was removed)
 - Design-Build Construction
 - Performance Specifications from Airbus
 - Lump sum GMP to plant operator
 - Mechanical and electrical sub-contractors selected at RFQ stage

Airbus – Powerhouse

Design-Build

- Project Attributes
 - LEED Gold Certification (LEED Silver target)
 - CUP expands with manufacturing
 - Tempered equipment bays
 - Closed automatic transition switchgear and controls

- Capacities
 - 4,200 tons chilled water
 - 44 MMBH heating water production
 - 2000 SCFM compressed air
 - Emergency Standby Power
- Schedule
 - Awarded June 2013
 - Completion July 2014



Airbus – Powerhouse

Design-Build

• Schedule Savings

- D-B-B About 18-20 months
- D-B 13 months

Best Practices

- Performance based requirements from Airbus
- Early phase charrette critically important with all stakeholders
- Early MEP sub-contractor involvement
- M&E sub communication with engineers
- Local City of Mobile permit coordinator

Summary

- There are Many Reasons a Project is Accelerated
- Three Methods to Accelerate
 - Early equipment procurement
 - Construction manager
 - Design-Build
- All options have pros/cons
- Other Options:
 - Phased Construction Contracts
 - Commissioning Agents
 - Permitting Agent (expediter)

- Design-build is the fastest
- The right solution is different for every project

Questions & Answers

Thank You! ——

Blake Ellis, PE, DBIA, LEED AP Principal Burns & McDonnell *On*Site Energy & Power 816-822-3332 bellis@burnsmcd.com

