DISTRICT COOLING 2018 CONFERENCE - DUBAI

Background Info.

 AC in the gulf area is a necessaty. (It's not a luxury as temperature in summer raise upto Dry Bulb: 123.8°F(51°C))

 When conventional AC (Window & Split Type AC), 70% of the power requirement in summer was allocated for AC.

By introducing DC, the KW/TR requirement has been drastically reduced from 1.8/1.5 to 0.9. (Around 50% saving of power for AC which is 35% of overall power requirement)

By introducing TES further power requirement reduction has been considered as further will be illustrated in the powerpoint.

Using TES To Save Both DC Operating And Capital Costs

DISTRICT COOLING 2018 CONFERENCE - DUBAI

Presented By: SAOUD ALDODSARI

Objective:	01 - THERMAL	02 - OPERATION	03 - DIFFERENT
	STORAGE	STRATEGY	APPLICATION
	<text></text>	<text></text>	<text></text>

District Cooling is a centralized production and distribution of chilled water from a service provider (EMPOWER) to several customers within a district. It consists of

> District Cooling Plant (DCP) (With TES or Conventional chiller)

. . .

Distribution Network DCDN

District Cooling is a centralized production and distribution of chilled water from a service provider (EMPOWER) to several customers within a district. It consists of

District Cooling Plant (DCP) (With TES or Without TES)

Distribution Network DCDN

District Cooling is a centralized production and distribution of chilled water from a service provider (EMPOWER) to several customers within a district. It consists of

 District Cooling Plant (DCP) (With TES or Conventional chiller)

Distribution Network DCDN

District Cooling is a centralized production and distribution of chilled water from a service provider (EMPOWER) to several customers within a district. It consists of

*

 District Cooling Plant (DCP) (With TES or Conventional chiller)

Distribution Network DCDN

Thermal Energy Storage: Where energy is being stored in a tank to be discharged at a later desired time.

Two Modes:

01

Load Profile:

This load profile is a graphical representation of the variation in the thermal load versus time.

Peak Load

Peak Load is simply the highest demand that has occurred over a specified time period

Base Load

2

3

Base load is the minimum continuous daily load requirement.

Load Variation

Load variation is transition in demand from base load to peak load & vice-versa.

TES In DCP's:

The optimum operational strategy is to charge the TES in off peak hours and to discharge the stored energy in peak hours.

Electrical Demand

TES shifts the cooling load to off peak hours and reduce demand power on Central electrical grid of DEWA.

Energy Demand

TES system shifts energy usage to a later period (Off-Peak) to reduce overall energy demand.

Benefits of Saving on Capacities 1of; chillers, cooling Towers, process pumps and related power requirements

TES:

3- CAPEX cost of TES is considerably lesser than Chillers & its auxiliaries.

2– DEWA Connection

charges reduced.

4-OPEX is reduced since charging of TES is done during night time where we have low WBT (i.e., Compressor lift is reduced)

TES vs Conventional Chiller Capacity

Adding Chiller Cost Breakdown (%)

6,000 TR Chiller	27%
Mechanical work – Supply & Installation / Primary pump /	
condenser pump / Cooling Tower/ piping & accessories	31%
Electrical work- Supply & Installation	28%
DEWA - Connection Charge for 6 MW	13%
Site Work	0.33%
Concrete Work	0.33%
Metal Work	0.23%
Labor	0.18%
	18,153,996 AED

TES vs Conventional Chiller Capacity

TES Cost Breakdown (%)

TES Tank capacity (Approximately 6000 TR ≈ 33,000TRH)	~	63%
Mechanical Work – Supply & Installation	~	16%
TES Tank Foundation - civil Work	~	12%
Pumps- flow / Capacity * 1.5 GPM/TR @ 50 ft	~	4%
Electrical Work supply & installation	~	4%
Control & Instrumentation (Control valves & flow meter / Tem	perature 🚬	
sensors etc)	~	1%
		≈12,479,000 AED

TES vs Conventional Chiller Capacity

Cost AED/TR				
TES Capacity of 6,000 TR	12,479,000 AED	Cost=AED/TR ≈	2,080	
Conventional 6,000 TR Chiller	18,153,996 AED	Cost=AED/TR ≈	3,026	
Cost Saving From 6,000 TR TES	~	5,674,996 AED		

TES Implementation:

BB-02 is Design and built with TES with storage capacity of 48,000 TRH.

Ultimate capacity of BB-02 is 43,750 TR where Conventional chillers are in total 35,000 TR and TES is 8,750 TR.

> **BB-02** Thermal Energy Storage systems has reduced 7.8 MW of Electrical Demand Load on DEWA power stations.

Α

B

D

BB02 Plant

BB-02: Direct Benefits 2 * 4,375 TR capacity chillers & related axillaries reduction.

BUSINESS BAY TES SCHEMATIC

JBR existing capacity is 60,000 TR. Empower is working on adding an extra capacity of 7,000 TR. TES option is considered.

In-house detailed design development of Two TES tanks equivalent to 3,500 TR each with storage capacity of 38,000 TRH is currently on going.

B

B

JBR Plant

 \star

Such TES has potential to reduce 6.3 MW of Electrical Demand Load on DEWA power stations.

BB upper network is served by two plants: BB03 having TES system & BB01 (40,200 TR) having no TES system, accordingly having redundant chillers capacity at part load.

> Empower opted to utilize the redundant capacity of BB01 by adding a remote TES system coupled to the upper BB network.

In-house detailed design development of Two TES tanks having a total storage capacity of 52,000 TRH is currently on going.

Α

B

D

BB06

Such TES has potential to reduce 8.5 MW of Electrical Demand Load on DEWA power stations.

