STRATEGICALLY TRANSITIONING FROM STEAM TO HOT WATER
OUTLINE

• Brief History
• Hot Water Advantages
• Site Distribution Analysis
• Summary
A BRIEF DISTRICT HEATING HISTORY

• Holly Steam Combination Company – First Commercial District Heating (1877)
• Denver’s District Steam System – Oldest in Operation (1880)
• Post WWII Era – Low Cost Energy
• District Energy St Paul – Largest North American Hot Water District Heating (Present)
HOT WATER SYSTEM ADVANTAGES

• Less required maintenance
• Less steam knowledge in developing workforce
• Modern buildings utilizing hot water heating
HOT WATER SYSTEM ADVANTAGES – GENERATION

• Steam System Components:
 – Boiler
 – Deaerator
 – Feedwater Pumps
 – Blowdown Vessel
 – Flash Tanks
 – Condensate Receivers
 – Condensate Pumps
 – Water Treatment
HOT WATER SYSTEM ADVANTAGES – GENERATION

• HW System Components:
 – Boiler
 – Primary/Secondary Pumps
 – Air Separator
 – Expansion Tank
HOT WATER SYSTEM ADVANTAGES – GENERATION

• Lower flue gas temperature increases combustion efficiency
• Supply water reset control
• Less idle/cycling losses
• Lower conductive losses to ambient
• Little/no make-up water costs
• Lower chemical treatment costs
HOT WATER SYSTEM ADVANTAGES – GENERATION

• Increased System Efficiency
 – Solar Thermal Heating
 – Geothermal
 – Cogeneration
 – Condensing Boilers
 – Thermal Storage
 – Heat Recovery Chillers
 – Waste Heat Recovery
HOT WATER SYSTEM ADVANTAGES – DISTRIBUTION

• Lower temperatures = less heat loss
• Utilize lower cost insulating materials
• Safety – System leaks are less dangerous
• Higher likelihood of corrosion in condensate return system
• Reduced number of expansion loops
• No condensate recovery vaults.
HURDLES IN CONVERSION

• Replacement of existing Steam Distribution piping.
• Heat Transfer stations and customer connections must be replaced.
• Higher pumping energy
SITE DISTRIBUTION ANALYSIS - STEAM

- 10 Buildings
- ~1 Mile of Distribution Piping
- 150 psig Distribution
- 15 psig at Building
- Steam-to-Hot Water Heat Exchangers at Building
- Atmospheric Pumped Condensate

Distribution Type

<table>
<thead>
<tr>
<th>Distribution Type</th>
<th>Total Building Demand</th>
<th>Distribution</th>
<th>Condensate Return</th>
<th>Heat Input Req’d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Heat Load</td>
<td>Mass Flow</td>
<td>Losses</td>
<td>Total Flow</td>
</tr>
<tr>
<td>Steam</td>
<td>45,625</td>
<td>45,850</td>
<td>3,100</td>
<td>48,950</td>
</tr>
</tbody>
</table>
SITE DISTRIBUTION ANALYSIS – HOT WATER

- Same Network as Steam
- 2,400 MBH in Steam Demand Savings
- 149.6°F at furthest building.

Distribution Table

<table>
<thead>
<tr>
<th>Distribution Type</th>
<th>Total Building Demand</th>
<th>Heat Load (MBH)</th>
<th>Flow Rate (GPM)</th>
<th>Losses (GPM)</th>
<th>Total Flow (GPM)</th>
<th>Pump (HP)</th>
<th>Pump (kW)</th>
<th>Heat Input Req’d (MBH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot Water</td>
<td></td>
<td>45,625</td>
<td>2,300</td>
<td>-</td>
<td>2,300</td>
<td>101</td>
<td>75</td>
<td>45,625</td>
</tr>
</tbody>
</table>
SITE DISTRIBUTION ANALYSIS - DEMAND

<table>
<thead>
<tr>
<th>Distribution Type</th>
<th>Total Building Demand</th>
<th>Distribution</th>
<th>Condensate Return</th>
<th>Heat Input Req'd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Heat Load MBH</td>
<td>Mass Flow lb/hr</td>
<td>Losses lb/hr</td>
<td>Total Flow lb/hr</td>
</tr>
<tr>
<td>Steam</td>
<td>45,625</td>
<td>45,850</td>
<td>3,100</td>
<td>48,950</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distribution Type</th>
<th>Total Building Demand</th>
<th></th>
<th>Distribution</th>
<th></th>
<th></th>
<th>Heat Input Req'd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Heat Load MBH</td>
<td>Flow Rate GPM</td>
<td>Losses lb/hr</td>
<td>Total Flow GPM</td>
<td>Pump HP kW</td>
<td>MBH</td>
</tr>
<tr>
<td>Hot Water</td>
<td>45,625</td>
<td>3,045</td>
<td>-</td>
<td>3,045</td>
<td>101 75</td>
<td>45,625</td>
</tr>
</tbody>
</table>

- **5% Reduction in Heating Demand**
SITE DISTRIBUTION ANALYSIS - CONSUMPTION

- Heating Consumption
 - 950MMBTU peak difference
 - 505MMBTU average difference
SITE DISTRIBUTION ANALYSIS - CONSUMPTION

- Heating Consumption
 - 950MMBTU peak difference
 - 505MMBTU average difference
SITE DISTRIBUTION ANALYSIS – COST ANALYSIS

<table>
<thead>
<tr>
<th>Option</th>
<th>Cost Difference</th>
<th>Simple Payback</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Capital</td>
<td>Energy</td>
</tr>
<tr>
<td>Steam vs Hot Water</td>
<td>($1,859,123)</td>
<td>($3,973)</td>
</tr>
</tbody>
</table>

- 20 Year Life Cycle Considered
- 49 Steam Traps (Five Year Life Expectancy)
- New Water to Water Heat Exchangers
- New Variable Volume Hot Water Pumps (60 HP ea)
SUMMARY

• Less Maintenance Required on Hot Water Systems

• Hot Water Distribution is more Energy Efficient