

CASE STUDY

Modernization of Control and Information Infrastructure for a Utility Plant Control System

Jim Riley, Texas A&M University Executive Director, Utilities & Energy Services

Rene Rios, Texas A&M University
Controls Engineer, Utilities & Energy Services

Tom McDonnell, Rockwell Automation Power and Energy Business Manager

OVERVIEW

- 5,200+ acres
- 800+ buildings
 - 30+ million gross square feet
 - 26+ million GSF conditioned

- Over 6 million GSF added since 2016
- 69,000 students
- Over 10,000 faculty and staff
- \$950+ million total annual research

UTILITIES & ENERGY SERVICES

Operate/maintain seven utility plants:

• CUP, SUP1, SUP2, SUP3, HSC, RELLIS, MCB

Utility Plant Capacities:

- 50MW power generation
 - 34 MW gas turbine
 - 16 MW steam turbines
- 66,000 tons of cooling (both electric & steam driven)
 - 37 chillers
 - 24,000 ton-hours of thermal storage
- 440,000 PPH of steam
 - 3 steam boilers
 - 8 steam to hot water heat exchangers
- 500 million BTU/hr of heating hot water
 - 56 hot water boilers

CAMPUS GSF VS ENERGY CONSUMPTION

ENERGY USE INTENSITY (EUI) ENERGY USE PER GSF

UES CONTINUUM OF SERVICES

PROCUREMENT	TRANSMISSION	PRODUCTION	DISTRIBUTION	METER & BILLING	ENERGY MANAGEMENT
Calculate and project campus energy requirements Specify annual and monthly consumption of electricity and natural gas Review and recommend payment of energy invoices Serve on TAMU energy risk management committee	TAMU owns: Domestic water transmission system Atmos owns: HP (600 psi) NG delivery system BTU owns: 138kV ERCOT electrical transmission system Coordinate closely with Atmos, ERCOT and BTU	Management of: • Seven utility plants • CUP & 3 SUPs • RELLIS Campus • HSC Campus • Moore Connally Building • Solid Waste & Recycling • Two wastewater treatment facilities • Domestic water systems Production of: • Electricity • Chilled water for cooling • Hot water for heating • Domestic cold & hot water • Steam	TAMU owns and operates campus delivery systems: 12.5kV electrical Domestic water (hot & cold) Chilled Water Heating Hot Water Steam Sanitary Sewer Storm Drainage HSC Campus (Bryan) RELLIS Campus Atmos owns: LP & IP natural gas delivery system	Over 2,500 revenue- quality meters in over 500 buildings Manage utility rate model and rate setting Cost recovery for all utilities and energy Energy efficiency improvement initiatives	Customer comfort and service Environmental control Building automation and HVAC operation Energy stewardship Energy Performance Improvement Project design review Capital improvement coordination

TYPICAL FACTORS REQUIRING MODERNIZATION OF CONTROLS

Data Visualization & Analysis

System Failures

Cybersecurity

Poor Documentation

New Standards Regulations, and Technology

Support Cost Issues

System Limitations

Potential Safety or Loss Events

Resource Loss or Retirement

CONTROLS SYSTEM AND PROJECT DEVELOPMENT

UPGRADE TIMETABLE	DATE
Emerson WDPF DCS - Installed	1990
Upgrade WDPF – Upgrade to Ovation	2006
Ovation expansion and upgrade	2011
Modernization requirement identified	2016
Developed preliminary project scope	2017
Evaluated control vendor proposals	2018
Finalized project delivery and bid evaluation	2019
Project construction award and kickoff	2020

COMPELLING CONSIDERATIONS/JUSTIFICATION

Hardware & Software Obsolescence

Data Acquisition & Analysis

System Integration Requirements

Cybersecurity

UES PROJECT OVERVIEW

Central Utility Plant (CUP)

- 48 MW of power generation capacity
- 27,500 tons of chilled water production
- 17,830 BHP of steam boiler capacity
- Ancillary equipment

3 Satellite Utility Plants (SUPs)

- 29,400 tons chilled water production
- 159,869 MBH hot water boiler production
- Ancillary equipment

138KV Substation

SEL Server

Wastewater Treatment Plant

Permitted for 4 MGD

Controls Upgrade

- Legacy Emerson Ovation DCS
- AB, CLX, SLCs & CMXs

TAMU IT Policy

Control System IT Infrastructure Modification

TECHNICAL EVALUATION AND IMPLEMENTATION TEAM

KEY STAKEHOLDERS

- Executive Director, Utilities & Energy Services
- Director, Utilities & Energy Services
- Associate Director, Utility Production Services
- Manager, Technical Services
- Manager, Utility Production Services
- Controls Engineer, Technical Services
- Supervisor, Instrumentation and Controls
- Supervisor, Water & Wastewater
- Technical Staff, Instrumentation and Controls
- UES IT Services
- TAMU Procurement Services/Contract Admin
- Office of General Counsel

TEAM RESPONSIBILITIES

- Specification Development with 3rd parties
- Vender Qualifications
- RFP Questions & Addendums
- Vendor Management
- Project Approvals
- Proposal evaluation and ranking by UES
- Vendor presentations
- Automation Partner selection
- Best and Final Offer/Bid Award
- Contract Negotiations
- Terms & Conditions
- Issue NTP for construction

PROJECT CONSIDERATIONS

Contracting

- Design-Build/EPC
- Competitive Sealed Proposal
- Contractors/Subcontractors
- State and University Terms

Technology/Platform

- **Existing Controls**
- **Existing Third Party Components** (SEL, PI, Cisco, etc.)
- DCS, PLC, Hybrid, Modern DCS

Delivery and Integration

- Vendor Led
- System Integrator
- EPC/Design Build Firm

UES PROJECT SCOPE OF WORK

CONTROL SYSTEM MODERNIZATION

Upgrade or replace existing Emerson Ovation distributed control system

Hardware and software
Maintain redundancy
Improve data access and sharing
Maintain and improve upon
third-party connectivity

Provide package design, drawings, installation, startup and commissioning

Utilize either pre-qualified vendor Emerson Ovation DCS or replacement with Rockwell

TECHNOLOGY PLATFORM -**EXISTING DCS HARDWARE**

Campus	Building	Location	Drop No	Brand	Туре	Comments	Hardwired IO	OEM Interface
Main	CUP	Rack Rm	01/51	OVATION	Controller	New Backplane	171	115
Main	CUP	Rack Rm	02/52	Qline	Controller	Replace	251	152
Main	CUP	CHW Rm	03/53	Qline	Controller	Replace	243	
Main	CUP	CHW Elect Rm	3-RIO	OVATION	RIO	New Backplane	217	473
Main	CUP	CHW Rm	04/54	Qline	Extended	Replace	469	226
West	SUP-1	Rack Rm	05/55	OVATION	Controller	New Backplane	503	153
West	SUP-1	Rack Rm	05-RIO	Qline	Extended	New Backplane		
All	138 KV SUB	138KV Sub-station	06/56	Qline	Controller	Replace	215	8,326
West	SUP-2	Rack Rm	07/57	Qline	Controller	Replace	398	234
Main	SUP-3	Rack Rm	08/58	OVATION	Controller	New Backplane	597	328
Main	CUP	Rack Rm	09/59	OVATION	Controller	New Backplane	250	733
West	SUP-1	Rack Rm	10/60	Qline	Controller	Replace	367	183
Main	SUP-1	Rack Rm	10-Exp	OVATION	Extended	New Backplane		
Main	CUP	Bus-4 Rm	11/61	OVATION	Controller	New Backplane	290	1,237
West	SUP-1	Rack Rm	11-RIO	OVATION	RIO	New Backplane	61	
Main	CUP	Bus-4 Rm	11-RIO	OVATION	RIO	New Backplane	44	
Main	CUP	Rack Rm	12/62	OVATION	Controller	New Backplane	239	207
West	SUP-2	Mezz Elect Rm	12-RIO	OVATION	RIO	New Backplane	240	
West	SUP-2	Rack Rm	13/63	OVATION	Controller	New Backplane	175	620
West	SUP-3	Rack Rm	14/64	OVATION	Controller	New Backplane	114	160
All	WWTP	WWTP	16/66	OVATION	Controller	New Backplane	464	
All	WWTP	B4051	16-1	Qline	RIO	Replace	97	
All	WWTP	White Building	16-2	Qline	RIO	Replace	55	
All	WWTP	B4052	16-3	OVATION & Qline	RIO	Replace	77	
All	WWTP	White Building	16-4	OVATION & Qline	RIO	Replace	23	
Main	CUP		RO	AB	SLC	Migration	72	
Main	CUP		STG-02	AB	CMX/ Flex	Retrofit	72	
Main	CUP		BL-001-BMS	AB	CLX-RED	Keep	160	
Main	CUP		BL-012-BMS	AB	SLC	Migration	80	
Main	CUP	Rack Rm	BL-012-CCS	AB	CLX	Retrofit	104	
TOTAL							6,048	13,147

15 CONTROLLERS

- 9 Ovation
- 6 Q-Line

6 RIO

- 4 Ovation
- 2 Q-Line
- 2 Combined

3 EXTENDED IO

- 1 Ovation
- 2 Q-Line

5 ALLEN BRADLEY

- 2 ControlLogix
- 1 CompactLogix
- 2 SLCs

TECHNOLOGY PLATFORM – EXISTING THIRD-PARTY HARDWARE

Over 13,000 IO from OEM controllers networked via communication gateways

EQUIPMENT DESCRIPTION	COMMUNICATION PROTOCOL
Boiler 1 BMS	Allen Bradley Ethernet
Boiler 1 CEMS	Allen Bradley Ethernet
Boiler 12	Allen Bradley Ethernet
Boiler 12 CEMS	Allen Bradley Ethernet
27 Chillers and 34 Boilers	Modbus 485/232
CHWP 101 and 102	Modbus TCP/IP
(3) HART Wireless Gateways	Modbus TCP/IP
Siemens Demand Flow System	Modbus TCP/IP
(2) Carrier Steam Turbine Driven Chillers	Modbus TCP/IP
GE Gas Turbine	Modbus TCP/IP
Veeder Root Fuel Oil Storage	Modbus TCP/IP
Eaton 480v Gateway (Sub 15,16,17) (NEW)	Modbus TCP/IP (NEW)
SEL Interface –DNP3	DNP3

Drop	MODBUS-R	MODBUS	MODBUS			DNP3	TOTAL
	TCP/IP	MASTER		CONFIGURE			
		TCP/IP		D	PLC ETHER.		
1	115						115
2		8	144				152
3	98		375				473
4	48		178				226
5			153				153
6							0
7			234				234
8			328				328
9	689		44				733
10	18		165				183
11			240		997		1237
12			104		103		207
13			620				620
14			160				160
190						8326	8326
TOTAL	968	8	2745	0	1100	8326	13147

TECHNOLOGY PLATFORM – MODERNIZATION BENEFITS

TEXAS A&M

- Unified platform that delivers the functionality required
- Single technology environment with a smaller toolset
- Enhanced asset visibility
- Limit foreign device interfaces between disparate systems
- More effective resource skillset
- High Availability Graphics to optimize the operation experiences

DOCUMENTATION DELIVERABLES

- System Architecture Diagram
- Hardware Design Document
- Functional Specification
- System Design Specification
- FAT Test Procedure
- Startup Test and Acceptance Checklist
- O&M Manual
- Training Manuals for:
 Operators, Engineers, Administrators

EXPECTED OUTCOME

1

Rapid system deployment

2

Simplified Commissioning

3

Faster time to operation

4

Simpler installation coordination

5

Future ready

6

Secure and resilient

7

Informative reporting

8

Lower Total Cost of Ownership (TCO)

ALIGNMENT WITH AUTOMATION PARTNER

Rockwell Automation has extensive experience and a large installed base in the Campus Energy Ecosystem

- Leading automation player in Campus Utilities
- Ability to mitigate risk on the project schedule

Products and services are helping Universities today

- Provide Scalable architecture
- Enhanced Platform/technology capabilities
- Heightened Cyber Security

Life Cycle support

- Low Total Cost of Ownership
- Scalable and Long-term support capability

TYPICAL FUTURE STATE

Energy Supply Energy Production & Optimization Model

Energy demand

Campus Energy 2020 THE POWER TO CHANGE

FEBRUARY 10-14 ▲ SHERATON DENVER DOWNTOWN ▲ DENVER, CO

