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Steam Generation Capacity:

• Biomass fuel (95% of load)

• Boiler 1 – 2.1 MW (60,000 PPH)

• Natural gas fuel (5% of load)

• Boiler 2 – 2.6 MW (75,000 PPH)

• Boiler 3 – 1.9 MW (55,000 PPH)

• Boiler 4 – 1.2 MW (35,000 PPH)

UI ENERGY PLANT – HEATING
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Figure 1. North campus energy plant



• Chilled water

• Thermocline thermal energy storage

• 7500 m3 (2 million gallons)

• 3100 ton cooling capacity from chillers

• 600 ton single effect absorption chiller

• 2500 tons from electric chillers

UI ENERGY PLANT – COOLING
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Figure 2. South campus chiller plant and cold TES



• 4.6 miles of tunnels

• Heating – 63 buildings, 4.5 million sq. ft.

• Cooling – 46 buildings, 2 million sq. ft.

STEAM DISTRIBUTION
Energy plant
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Figure 3. Steam distribution tunnel map



CURRENT FUEL COSTS
Wood Chips

• $51 per bone dry short ton

• $8.61 per 1000 kg of steam produced 

($3.84 per 1000 pounds of steam)

Natural Gas

• $0.60 per therm

• $17.60 per 1000 kg of steam produced 

($8.12 per 1000 pounds of steam)
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Figure 4. Wood chip storage facility



COMPARISON OF FUEL COSTS
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Figure 5. Current fuel costs

• Fuel costs are historically 

stable

• Wood chip supply is based 

on local lumber mills

• Need to meet future growth 

without relying on fossil fuels



• Enhance Moscow campus fuel sustainability

• Enrich local community environmental sustainability

• Soil

• Water

• Air

• Improve the financial advantages by incinerating MSW through WTE technology.

WTE OBJECTIVES
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WASTE CHARACTERIZATION
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Figure 7. Waste characterization by mass



TYPICAL MSW ENERGY CONTENT
Solid waste material HHV (MJ/kg)

Textiles 14.33

Rubber 27.93

Leather 14.95

Wood 10.38

Food waste 5.4

Yard trimmings 6.23

Newspaper 16.61

Corrugated cardboard 17.13

Paper 6.96

Other/Landfill 21.6
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Table 1. Energy content of common MSW materials [2]

• Low energy content in food waste and 

yard trimmings

• Very high moisture content

• 28% of typical MSW by weight

• Energy content in paper products varies

• Largest category of MSW



HEATING VALUE OF PLASTICS

Plastic
EIA 

(MJ/kg)

Columbia

(MJ/kg)

CCNY

(MJ/kg)

Franklin

(MJ/kg)

Used in 

this study

(MJ/kg)

PET #1 21.3 23.9 24.4 24.7 24.3

HDPE #2 39.5 44.3 40.6 46.5 43.8

PVC #3 17.1 19.2 24.4 18.3 20.6

LDPE/LLDPE #4 25 44.3 44.1 46.3 44.9

PP #5 39.5 44.3 44.1 46.4 44.9

PS #6 37 41.5 40.6 41.9 41.3

Other #7 21.3 n/a 40.6 n/a 40.6
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Table 2. Energy content of plastics [2-5]

• Discrepancies in the values 

reported by the EIA

• Large portion of energy content 

on MSW

• Recycling efforts will impact WTE

• More sustainable than incineration



MSW ENERGY CONTENT ON CAMPUS

• MSW produced on campus

• 13.67 MJ/kg

• Typical EPA estimates

• 12.18 MJ/kg

• Higher value is likely due to composting 

efforts on campus
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Figure 8. Energy content of MSW



WTE FACILITY SIZING

• Few U.S. WTE facilities that 

produce only thermal energy

• Similar performance can be 
used to estimate UI capacity

• Fuel supply of 94 metric tons 

per day if mixed with wood 

chips

Location Population

Waste 

(1000 

kg/day)

Boilers

Steam 

capacity 

(kg/hr)

Steam 

produced per 

kg waste (kg)

Huntsville, AL 277000 626 2 81000 3.11

Fosston, MN 90000 73 2 9500 3.15

Red Wing, MN 44000 87 2 6800 1.88

Hampton, VA 180000 218 2 29900 3.3

Alexandria, MN 42000 218 3 34500 3.8

JMU, VA 122000 181 2 25900 3.42

UI Moscow 

campus only
9350 1.92 - 550 3.11

Surrounding 

area
39000 44 - 5700 3.11
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Table 3. Comparison of thermal energy WTE facilities [6]



FUEL MIX SCENARIOS
1. Current fuel mix:

• 95% wood chips

• 5% natural gas

2. UI campus only:

• 773 metric tons of MSW landfilled

• Can only meet 2% of load

3. Surrounding area:

• 16,000 metric tons of MSW

• Can meet 42% of load
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Figure 9. Fuel scenarios



FINANCIAL COMPARISON

• $500,000 annual savings 

using MSW based on current 

steam production

• Includes $90,000 in tipping fees

• $1.5 million in annual savings 

over using natural gas 

exclusively
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Figure 10. Cost to produce 1000 kg of steam



OFFSETTING CARBON EMISSIONS 
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• Wood chips are a carbon neutral source of fuel

• MSW in Moscow, ID is shipped by rail 190 km (120 miles) to the landfill

• Potential to eliminate 53 tons of CO2 emissions annually

• 1 ton of CO2 emissions eliminated for each ton diverted from landfills for use 

in WTE

Would using MSW fuel increase net carbon emissions to the environment?



OFFSETTING CO2 AND CH4
• Increase in annual CO2 emissions 

of 4200 metric tons

• MSW fuel is only partially carbon 
neutral

• Trade off for CO2 increase:

• Reduction of CH4 emissions by 2400 
metric tons

• Elimination of landfill use

• Protection of water resources 
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Figure 11. Net CO2 emissions for each fuel mix
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CONCLUSIONS

• UI campus MSW is insufficient to meet load demands

• 42% of current steam load can be met with MSW from the UI 

campus surrounding community

• $500,000 annual savings in fuel for the UI campus

• Environmental benefits of WTE include:

• Soil and ground water protection through the diverting MSW from the landfill

• Increased recycling rates by processing MSW before incineration

• Increase in CO2 emissions is offset by reduced methane emissions
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FUTURE STUDY

• Investigation of incineration technology options for the UI campus

• A comprehensive feasibility study on WTE technology (MSW fuel + Incineration 

tech. options)

• Partnership between university and local community to source MSW fuel
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QUESTIONS?
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