FEASIBILITY STUDY FOR A WASTE TO ENERGY PLANT: UNIVERSITY OF IDAHO, MOSCOW CAMPUS

Co-authors: Marc Compton (Presenting) Justin Prince Levi Vogel Dr. Behnaz Rezaie

OUTLINE

- University of Idaho energy plant
- Current fuel costs
- Objectives of waste to energy
- Waste characterization
- Municipal solid waste energy content
- Facility sizing and fuel scenarios
- Offsetting CO₂ and CH₄ emissions
- Conclusion
- Future Study

UI ENERGY PLANT – HEATING

Steam Generation Capacity:

- Biomass fuel (95% of load)
 - Boiler 1 2.1 MW (60,000 PPH)
- Natural gas fuel (5% of load)
- Boiler 2 2.6 MW (75,000 PPH)
- Boiler 3 1.9 MW (55,000 PPH)
- Boiler 4 1.2 MW (35,000 PPH)

Figure 1. North campus energy plant

UI ENERGY PLANT – COOLING

- Chilled water
 - Thermocline thermal energy storage
 - 7500 m³ (2 million gallons)
 - 3100 ton cooling capacity from chillers
 - 600 ton single effect absorption chiller
 - 2500 tons from electric chillers

Figure 2. South campus chiller plant and cold TES

STEAM DISTRIBUTION

- 4.6 miles of tunnels
- Heating 63 buildings, 4.5 million sq. ft.
- Cooling 46 buildings, 2 million sq. ft.

Figure 3. Steam distribution tunnel map

CURRENT FUEL COSTS

Figure 4. Wood chip storage facility

Wood Chips

- \$51 per bone dry short ton
- \$8.61 per 1000 kg of steam produced (\$3.84 per 1000 pounds of steam)

Natural Gas

- \$0.60 per therm
- \$17.60 per 1000 kg of steam produced (\$8.12 per 1000 pounds of steam)

COMPARISON OF FUEL COSTS

- Fuel costs are historically stable
- Wood chip supply is based on local lumber mills
- Need to meet future growth without relying on fossil fuels

WTE OBJECTIVES

- Enhance Moscow campus fuel sustainability
- Enrich local community environmental sustainability
 - Soil
 - Water
 - Air
- Improve the financial advantages by incinerating MSW through WTE technology.

WASTE CHARACTERIZATION

College of Engineering

TYPICAL MSW ENERGY CONTENT

Solid waste material	HHV (MJ/kg)		
Textiles	14.33		
Rubber	27.93		
Leather	14.95		
Wood	10.38		
Food waste	5.4		
Yard trimmings	6.23		
Newspaper	16.61		
Corrugated cardboard	17.13		
Paper	6.96		
Other/Landfill	21.6		

Table 1. Energy content of common MSW materials [2]

- Low energy content in food waste and yard trimmings
 - Very high moisture content
 - 28% of typical MSW by weight
- Energy content in paper products varies
 - Largest category of MSW

HEATING VALUE OF PLASTICS

- Discrepancies in the values reported by the EIA
- Large portion of energy content on MSW
- Recycling efforts will impact WTE
 - More sustainable than incineration

Plastic	EIA (MJ/kg)	Columbia (MJ/kg)	CCNY (MJ/kg)	Franklin (MJ/kg)	Used in this study (MJ/kg)
PET #1	21.3	23.9	24.4	24.7	24.3
HDPE #2	39.5	44.3	40.6	46.5	43.8
PVC #3	17.1	19.2	24.4	18.3	20.6
LDPE/LLDPE #4	25	44.3	44.1	46.3	44.9
PP #5	39.5	44.3	44.1	46.4	44.9
PS #6	37	41.5	40.6	41.9	41.3
Other #7	21.3	n/a	40.6	n/a	40.6

Table 2. Energy content of plastics [2-5]

MSW ENERGY CONTENT ON CAMPUS

- MSW produced on campus
 - 13.67 MJ/kg
- Typical EPA estimates
 - 12.18 MJ/kg
- Higher value is likely due to composting efforts on campus

Figure 8. Energy content of MSW

WTE FACILITY SIZING

- Few U.S. WTE facilities that produce only thermal energy
 - Similar performance can be used to estimate UI capacity
- Fuel supply of 94 metric tons per day if mixed with wood chips

		Waste		Steam	Steam	
Location	Population	(1000	Boilers	capacity	produced per	
		kg/day)		(kg/hr)	kg waste (kg)	
Huntsville, AL	277000	626	2	81000	3.11	
Fosston, MN	90000	73	2	9500	3.15	
Red Wing, MN	44000	87	2	6800	1.88	
Hampton, VA	180000	218	2	29900	3.3	
Alexandria, MN	42000	218	3	34500	3.8	
JMU, VA	122000	181	2	25900	3.42	
UI Moscow	9350	1 92	-	550	3 11	
campus only	5550	1.52		000	0.11	
Surrounding	39000	44	-	5700	3.11	
area				0.00		

Table 3. Comparison of thermal energy WTE facilities [6]

FUEL MIX SCENARIOS

- 1. Current fuel mix:
 - 95% wood chips
 - 5% natural gas
- 2. UI campus only:
 - 773 metric tons of MSW landfilled
 - Can only meet 2% of load
- 3. Surrounding area:
 - 16,000 metric tons of MSW
 - Can meet 42% of load

FINANCIAL COMPARISON

- \$500,000 annual savings using MSW based on current steam production
 - Includes \$90,000 in tipping fees
- \$1.5 million in annual savings over using natural gas exclusively

Figure 10. Cost to produce 1000 kg of steam

OFFSETTING CARBON EMISSIONS

- Wood chips are a carbon neutral source of fuel
- MSW in Moscow, ID is shipped by rail 190 km (120 miles) to the landfill
 - Potential to eliminate 53 tons of CO₂ emissions annually
- 1 ton of CO₂ emissions eliminated for each ton diverted from landfills for use in WTE

Would using MSW fuel increase net carbon emissions to the environment?

OFFSETTING CO₂ AND CH₄

- Increase in annual CO₂ emissions of 4200 metric tons
 - MSW fuel is only partially carbon neutral
- Trade off for CO₂ increase:
 - Reduction of CH₄ emissions by 2400 metric tons
 - Elimination of landfill use
 - Protection of water resources

Figure 11. Net CO₂ emissions for each fuel mix

CONCLUSIONS

- UI campus MSW is insufficient to meet load demands
- 42% of current steam load can be met with MSW from the UI campus surrounding community
- \$500,000 annual savings in fuel for the UI campus
- Environmental benefits of WTE include:
 - Soil and ground water protection through the diverting MSW from the landfill
 - Increased recycling rates by processing MSW before incineration
 - Increase in CO₂ emissions is offset by reduced methane emissions

FUTURE STUDY

- Investigation of incineration technology options for the UI campus
- A comprehensive feasibility study on WTE technology (MSW fuel + Incineration tech. options)
- Partnership between university and local community to source MSW fuel

QUESTIONS?

REFERENCES

- 1. United States Environmental Protection Agency, "Advancing sustainable materials management: 2014 fact sheet," Washington DC, USA, 2016.
- United States Energy Information Administration, "Methodology for allocating municipal solid waste to biogenic and non-biogenic energy," Washington DC, USA, 2007.
- 3. N. J. Themelis and C. Mussche, "2014 energy and economic value of municipal solid waste (MSW), Including non-recycled plastics (NRP), currently landfilled in the fifty states," *Columbia Univ.*, p. 40, 2014.
- Franklin Associates, "Cradle-to-gate life cycle inventory of nine plastic resins and four polyurethane precursors," Prairie Village, Kansas, USA, 2011.
- 5. D. Tsiamis and M. Castaldi, "Determining accurate heating values of non-recycled plastics (NRP)," *City Univ. New York*, pp. 1–27, 2016.
- 6. T. Michaels and I. Shiang, "2016 Directory of waste-to-energy facilities," *Energy Recover. Counc.*, pp. 1–72, 2016.

