

Community Microgrids: Time for a New Regulatory Compact?

IDEA2019: The Energy for More Resilient Cities
June 26, 2019

Patrick L. Morand

Introduction

Objectives:

- Gain an understanding of the regulatory history of electricity in the U.S.
- Learn how that history has resulted in the current "regulatory compact" that has existed for the better part of 100 years
- ➤ Identify how the introduction of competition has resulted in regulated and deregulated markets at both the wholesale and retail levels
- Examine actual microgrid projects in several different states
- Explore how changes to the regulatory compact are required to allow for the proliferation of community microgrids

Roadmap:

- Brief History of Electricity Regulation
- Overview of U.S. Markets Today
- Microgrid Case Studies
- Regulatory Challenges for Microgrids
- Opportunities for a New Regulatory Compact

- Community = Utility-Scale (not Campus or Remote) Microgrids
 - <u>Definitions</u>:
 - Generally, a microgrid is a small, localized network within a clearly defined electrical boundary consisting of end-use customers (load); distributed energy resources (DER); the wires connecting DER to the load (distribution assets); and the metering and communication technologies that balance DER and load, and enable it to operate in either grid-connected mode or in island mode (controls)
 - » DER may include distributed generation such as diesel generators, CHP, solar; energy storage, EVs; energy efficiency, demand response and other demand side management

- Community = Utility-Scale (not Campus or Remote) Microgrids
 - Definitions (cont.):
 - Campus microgrids serve a single customer site or facility such as a university, military base, or corporate or industrial facility
 - Campus microgrids can operate in parallel with the grid under normal conditions and also serve as a back-up source of power during a blackout
 - Remote microgrids, in contrast, are off-grid systems that may be found on islands, remote villages, or remote industrial facilities where it is technically or economically infeasible to interconnect with the grid

- Community = Utility-Scale (not Campus or Remote) Microgrids
 - <u>Definitions (cont.)</u>:
 - Community microgrids serve multiple customers across multiple properties within a community, such as a hospital, police station, grocery store and gas station
 - Community microgrids integrate with the local utility by utilizing the existing distribution-level infrastructure and can operate in parallel with the grid under normal conditions and serve as a stand-alone source of power during an outage

www.duanemorris.com

A Brief History of Electricity Regulation

- In the beginning...
 - Industrialization
 - Private investors (IOUs)
 - Municipalities (Muni's)
 - Rural electric cooperatives (Co-op's)

A Brief History of Electricity Regulation

- Vertically integrated utility
 - One entity (IOU/muni/co-op) owns & operates the generation, transmission, and distribution of electricity to its customers

A Brief History of Electricity Regulation

- Vertically integrated utility
 - Avoid duplication
 - Economies of scale
 - Natural Monopoly

A Brief History of Electricity Regulation

The Regulatory Compact

The State gives the <u>utility</u>:

- Exclusive franchise territory
- Recover and earn a return on prudent capital investments
- Power of eminent domain
- Limitation on liability

The utility gives the <u>public</u>:

- Obligation to serve all
- Service quality standards
- Consent to regulation
- Just and reasonable rates

Overview of U.S. Markets Today

Federal Law vs. State Law

Federal	State
 Transmission in Interstate 	 Generation
Commerce	 Distribution
 Wholesale Sales 	 Retail Sales
 Federal Energy Regulatory 	 State Public Utility/Regulatory
Commission (FERC)	Commissions

Overview of U.S. Markets Today

- Steps toward competition (Federal)
 - Public Utility Regulatory Policy Act of 1978 (PURPA)
 - Energy Policy Act of 1992 (EPAct 1992)
 - FERC Order No. 888
 - FERC Order No. 2000

www.duanemorris.com

Overview of U.S. Markets Today

Steps toward competition (Federal)

Overview of U.S. Markets Today

- Steps toward competition (States)
 - Deregulation (or restructuring) of retail electricity markets
 - No longer vertically integrated utilities
 - Unbundled rates
 - Retail choice

Overview of U.S. Markets Today

Steps toward competition (States)

www.duanemorris.com

Overview of U.S. Markets Today

Steps toward competition (States)

Image: Consumer First Renewables

http://competitiveenergy.org/consumer-tools/state-by-state-links

Overview of U.S. Markets Today

Quick Recap:

- For about 100 years or so, the U.S. electricity market has consisted of vertically integrated utilities that are regulated as monopolies
- ➤ The passage of PURPA, EPAct 1992, and FERC Order No. 888, in particular, led to deregulation and competition at the wholesale level
- States began to move toward deregulation and competition at the retail level, but that process was largely halted
 - Most States have traditional (monopoly) regulation of vertically integrated utilities;
 while some States are deregulated and allow retail competition in generation

- Traditional (monopoly) State examples:
 - Alabama
 - ➤ Alabama Power's Smart NeighborhoodTM Project
 - Serves 62 new, high-efficiency homes tied to a new microgrid & local grid
 - DERs consist of solar array, energy storage, and natural gas-fired generator
 - Partnership among Alabama Power, DOE, Oak Ridge National Laboratory,
 Signature Homes, EPRI, various vendors
 - \$1.8 million from DOE; undisclosed cost share from Alabama Power; presumably those costs rate based since microgrid provides larger grid reliability
 - Alabama Power owns & operates all components of the microgrid

- Traditional (monopoly) State examples:
 - North Carolina
 - Duke Energy's Proposed Hot Springs Microgrid Project
 - The microgrid will serve the Town of Hot Springs via the town's only feeder, will provide grid support when grid-tied, and can island in emergencies
 - DERs will consist of 2 MW (AC) solar PV and 4 MW of energy storage
 - The cost of the project was redacted in the public version of the CPCN application
 - Duke Energy will rate base the project as a non-wires alternative to needed upgrades on its system
 - Duke Energy will own & operate all components of the microgrid

- Deregulated (competitive) State examples:
 - Illinois
 - ComEd's Bronzville Project
 - To serve 10 community facilities: police headquarters, health clinics, schools, public works buildings, restaurants, among others
 - The microgrid will consist of a solar array, energy storage, diesel back-up generators, and other yet to be determined DERs
 - It will interconnect with an existing, already operational microgrid and the two microgrids will communicate with each other as a "microgrid cluster"
 - ComEd will not own generation assets; competitive bid or lease

- Deregulated (competitive) State examples:
 - Illinois (cont.)
 - ComEd's Bronzville Project (cont.)
 - \$5 million from DOE; \$25 million to be rate based by ComEd
 - Illinois Commerce Commission accepted ComEd's rationale for rate basing these assets: the learnings of the project will benefit all of ComEd's customers
 - ComEd also agreed to work with others to develop a microgrid services tariff and to address third party owned microgrids in its footprint

- Deregulated (competitive) State examples:
 - Maryland
 - Baltimore Gas & Electric "Public Purpose" Microgrids
 - Public Purpose: provide specific benefits to citizens during critical times
 - The Maryland PSC rejected the proposal on several grounds, including:
 - » the traditional ratemaking process could have been used instead of a surcharge;
 - » no cost-benefit analysis had been performed supporting rate base approach;
 - » lack of investment from the intended beneficiaries or from BGE's shareholders;
 - » lack of state or federal funding resources;
 - » no proposal to include third party participation in the design;
 - » "island mode" would conflict with Maryland's retail choice laws

- Deregulated (competitive) State examples:
 - Maryland (cont.)
 - Pepco Public Purpose Microgrids
 - Pepco proposed to rate base the costs of the two microgrids
 - The Maryland PSC rejected the proposal for some of the same reasons it rejected the BGE proposal, including:
 - » lack of microgrid participant contribution;
 - » failure to seek state or federal funding resources; and
 - the cost-benefit analysis did not support using a rate based approach

- Partially Deregulated (select customers only) example:
 - California
 - SDG&E's Borrego Springs Project
 - Serves 2,800 customers, 2,500 of which are residential customers
 - DERs include diesel generators, energy storage, demand response, and solar PV, including customer-owned rooftop solar
 - Partnership among SDG&E, DOE, Pacific Northwest National Laboratories, University of San Diego, various vendors
 - \$8 million from DOE; \$2.8 million from CEC, \$2.8 million in private funding from SDG&E and vendors, and \$4.4 million rate based by SDG&E
 - SDG&E owns & operates all components of the microgrid (except rooftop solar)

Key Takeaways:

- In both the traditional or deregulated markets, the proposed and approved microgrid projects:
 - owned and operated by distribution utilities
 - > rate based at least some portion of the cost
- Thus, even in competitive markets, the current regulatory compact favors the distribution utility business model and cost recovery
- So what?

Regulatory Challenges for Microgrids

- Barriers, generally:
 - Definitions
 - Degree of regulation
 - Interoperability
 - Interconnection Standards
 - Cybersecurity

Regulatory Challenges for Microgrids

Barriers within traditional markets:

- Franchise rights may exclude non-utility ownership of microgrids
- Non-utility would need to obtain utility status to
 - make electric sales
 - cross rights-of-way
- Cost-based ratemaking acts as disincentive to reduce cost
 - > energy efficiency & demand response

Regulatory Challenges for Microgrids

- Barriers within deregulated markets:
 - Utilities are prohibited or limited in owning generation (DER)
 - Disincentive for utilities to pursue microgrids
 - Non-utility microgrid still needs access to distribution system
 - Interconnection Rules
 - Stand-by Charges
 - Exit Fees

State-level Initiatives:

- Grid modernization
 - > NY REV, DC MEDSIS, IL NextGrid, among others
- Microgrid tariffs
 - Hawaii and California
- Grants and Programs
 - > MA, NY, NJ, CT, CA, others

- National/Federal-level Initiatives:
 - IEEE 1547
 - Interconnection standards
 - FERC DER Aggregation Proceeding
 - Participation in RTO markets

Quid pro quo:

- Changes to the regulatory landscape should not be limited to the distribution utilities, microgrids should also see changes:
 - Definitions regarding the different types, sizes of microgrids
 - Standards applicable to microgrids
 - Interconnection
 - Reliability
 - Cybersecurity
 - Regulation of microgrids depending on type
 - Utility? Electric supplier? Something else?

- New Regulatory Compact:
 - If these initiatives are implemented, what would be the result?
 - State-distribution utility compact
 - The State grants the utility a franchise for distribution assets if...
 - State-microgrid owner compact
 - The State permits a microgrid owner to operate if...

www.duanemorris.com

Contact

Patrick L. Morand

Associate

Duane Morris LLP

505 9th Street, N.W., Suite 1000

Washington, DC 20004

(202) 776-7874 - Direct

(202) 277-4243 - Cell

PLMorand@duanemorris.com

www.duanemorris.com