Community Microgrids:
Time for a New Regulatory Compact?

IDEA2019: The Energy for More Resilient Cities
June 26, 2019
Patrick L. Morand
Introduction

• **Objectives:**
 - Gain an understanding of the regulatory history of electricity in the U.S.
 - Learn how that history has resulted in the current “regulatory compact” that has existed for the better part of 100 years
 - Identify how the introduction of competition has resulted in regulated and deregulated markets at both the wholesale and retail levels
 - Examine actual microgrid projects in several different states
 - Explore how changes to the regulatory compact are required to allow for the proliferation of community microgrids
Overview

• **Roadmap:**
 – Brief History of Electricity Regulation
 – Overview of U.S. Markets Today
 – Microgrid Case Studies
 – Regulatory Challenges for Microgrids
 – Opportunities for a New Regulatory Compact
Overview

• **Community** = Utility-Scale (not Campus or Remote) Microgrids
 – **Definitions:**

 ➢ Generally, a microgrid is a small, localized network within a clearly defined electrical boundary consisting of end-use customers (load); distributed energy resources (DER); the wires connecting DER to the load (distribution assets); and the metering and communication technologies that balance DER and load, and enable it to operate in either grid-connected mode or in island mode (controls)

 » DER may include distributed generation such as diesel generators, CHP, solar; energy storage, EVs; energy efficiency, demand response and other demand side management
Overview

- **Community** = Utility-Scale (not Campus or Remote) Microgrids
 - Definitions (cont.):
 - Campus microgrids serve a single customer site or facility such as a university, military base, or corporate or industrial facility
 - Campus microgrids can operate in parallel with the grid under normal conditions and also serve as a back-up source of power during a blackout
 - Remote microgrids, in contrast, are off-grid systems that may be found on islands, remote villages, or remote industrial facilities where it is technically or economically infeasible to interconnect with the grid
Overview

• **Community** = Utility-Scale (not Campus or Remote) Microgrids
 – **Definitions (cont.):**
 - Community microgrids serve multiple customers across multiple properties within a community, such as a hospital, police station, grocery store and gas station
 - Community microgrids integrate with the local utility by utilizing the existing distribution-level infrastructure and can operate in parallel with the grid under normal conditions and serve as a stand-alone source of power during an outage
A Brief History of Electricity Regulation

• In the beginning…
 – Industrialization
 – Private investors (IOUs)
 – Municipalities (Muni’s)
 – Rural electric cooperatives (Co-op’s)
A Brief History of Electricity Regulation

- **Vertically integrated utility**
 - One entity (IOU/muni/co-op) owns & operates the generation, transmission, and distribution of electricity to its customers

Image: Energy Information Administration
A Brief History of Electricity Regulation

• Vertically integrated utility
 – Avoid duplication
 – Economies of scale
 – Natural Monopoly
A Brief History of Electricity Regulation

• The Regulatory Compact

The State gives the utility:

– Exclusive franchise territory
– Recover and earn a return on prudent capital investments
– Power of eminent domain
– Limitation on liability

The utility gives the public:

– Obligation to serve all
– Service quality standards
– Consent to regulation
– Just and reasonable rates
Overview of U.S. Markets Today

• Federal Law vs. State Law

<table>
<thead>
<tr>
<th>Federal</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Transmission in Interstate Commerce</td>
<td>• Generation</td>
</tr>
<tr>
<td>• Wholesale Sales</td>
<td>• Distribution</td>
</tr>
<tr>
<td>• Federal Energy Regulatory Commission (FERC)</td>
<td>• Retail Sales</td>
</tr>
<tr>
<td></td>
<td>• State Public Utility/Regulatory Commissions</td>
</tr>
</tbody>
</table>
Overview of U.S. Markets Today

• **Steps toward competition (Federal)**
 – FERC Order No. 888
 – FERC Order No. 2000
Overview of U.S. Markets Today

• **Steps toward competition (Federal)**
Overview of U.S. Markets Today

• **Steps toward competition (States)**
 – Deregulation (or restructuring) of retail electricity markets
 – No longer vertically integrated utilities
 – Unbundled rates
 – Retail choice
Overview of U.S. Markets Today

- Steps toward competition (States)
Overview of U.S. Markets Today

• **Steps toward competition (States)**
Overview of U.S. Markets Today

• **Quick Recap:**
 - For about 100 years or so, the U.S. electricity market has consisted of vertically integrated utilities that are regulated as monopolies.
 - The passage of PURPA, EPAct 1992, and FERC Order No. 888, in particular, led to deregulation and competition at the wholesale level.
 - States began to move toward deregulation and competition at the retail level, but that process was largely halted.
 - Most States have traditional (monopoly) regulation of vertically integrated utilities; while some States are deregulated and allow retail competition in generation.
Microgrid Projects in Regulated & Deregulated Markets

• Traditional (monopoly) State examples:
 – Alabama
 - Alabama Power’s Smart Neighborhood™ Project
 - Serves 62 new, high-efficiency homes tied to a new microgrid & local grid
 - DERs consist of solar array, energy storage, and natural gas-fired generator
 - Partnership among Alabama Power, DOE, Oak Ridge National Laboratory, Signature Homes, EPRI, various vendors
 - $1.8 million from DOE; undisclosed cost share from Alabama Power; presumably those costs rate based since microgrid provides larger grid reliability
 - Alabama Power owns & operates all components of the microgrid
Microgrid Projects in Regulated & Deregulated Markets

• **Traditional (monopoly) State examples:**
 – North Carolina
 - Duke Energy’s Proposed Hot Springs Microgrid Project
 - The microgrid will serve the Town of Hot Springs via the town’s only feeder, will provide grid support when grid-tied, and can island in emergencies
 - DERs will consist of 2 MW (AC) solar PV and 4 MW of energy storage
 - The cost of the project was redacted in the public version of the CPCN application
 - Duke Energy will rate base the project as a non-wires alternative to needed upgrades on its system
 - Duke Energy will own & operate all components of the microgrid
Microgrid Projects in Regulated & Deregulated Markets

• Deregulated (competitive) State examples:
 – Illinois
 ➢ ComEd’s Bronzville Project
 ▪ To serve 10 community facilities: police headquarters, health clinics, schools, public works buildings, restaurants, among others
 ▪ The microgrid will consist of a solar array, energy storage, diesel back-up generators, and other yet to be determined DERs
 ▪ It will interconnect with an existing, already operational microgrid and the two microgrids will communicate with each other as a “microgrid cluster”
 ▪ ComEd will not own generation assets; competitive bid or lease
Microgrid Projects in Regulated & Deregulated Markets

• Deregulated (competitive) State examples:
 – Illinois (cont.)
 ➢ ComEd’s Bronzville Project (cont.)
 ▪ $5 million from DOE; $25 million to be rate based by ComEd
 ▪ Illinois Commerce Commission accepted ComEd’s rationale for rate basing these assets: the learnings of the project will benefit all of ComEd’s customers
 ▪ ComEd also agreed to work with others to develop a microgrid services tariff and to address third party owned microgrids in its footprint
Microgrid Projects in Regulated & Deregulated Markets

• Deregulated (competitive) State examples:
 – Maryland
 ➢ Baltimore Gas & Electric “Public Purpose” Microgrids
 ▪ Public Purpose: provide specific benefits to citizens during critical times
 ▪ The Maryland PSC rejected the proposal on several grounds, including:
 » the traditional ratemaking process could have been used instead of a surcharge;
 » no cost-benefit analysis had been performed supporting rate base approach;
 » lack of investment from the intended beneficiaries or from BGE’s shareholders;
 » lack of state or federal funding resources;
 » no proposal to include third party participation in the design;
 » “island mode” would conflict with Maryland’s retail choice laws
Microgrid Projects in Regulated & Deregulated Markets

• **Deregulated (competitive) State examples:**
 – **Maryland (cont.)**
 - **Pepco Public Purpose Microgrids**
 - Pepco proposed to rate base the costs of the two microgrids
 - The Maryland PSC rejected the proposal for some of the same reasons it rejected the BGE proposal, including:
 - lack of microgrid participant contribution;
 - failure to seek state or federal funding resources; and
 - the cost-benefit analysis did not support using a rate based approach
Microgrid Projects in Regulated & Deregulated Markets

• Partially Deregulated (select customers only) example:
 – California
 - SDG&E’s Borrego Springs Project
 - Serves 2,800 customers, 2,500 of which are residential customers
 - DERs include diesel generators, energy storage, demand response, and solar PV, including customer-owned rooftop solar
 - Partnership among SDG&E, DOE, Pacific Northwest National Laboratories, University of San Diego, various vendors
 - $8 million from DOE; $2.8 million from CEC, $2.8 million in private funding from SDG&E and vendors, and $4.4 million rate based by SDG&E
 - SDG&E owns & operates all components of the microgrid (except rooftop solar)
Microgrid Projects in Regulated & Deregulated Markets

• **Key Takeaways:**
 – In both the traditional or deregulated markets, the proposed and approved microgrid projects:
 ➢ owned and operated by distribution utilities
 ➢ rate based at least some portion of the cost
 – Thus, even in competitive markets, the current regulatory compact favors the distribution utility business model and cost recovery
 – So what?
Regulatory Challenges for Microgrids

• **Barriers, generally:**
 – Definitions
 – Degree of regulation
 – Interoperability
 – Interconnection Standards
 – Cybersecurity
Regulatory Challenges for Microgrids

• **Barriers within traditional markets:**
 - Franchise rights may exclude non-utility ownership of microgrids
 - Non-utility would need to obtain utility status to
 ➢ make electric sales
 ➢ cross rights-of-way
 - Cost-based ratemaking acts as disincentive to reduce cost
 ➢ energy efficiency & demand response
Regulatory Challenges for Microgrids

• **Barriers within deregulated markets:**

 – Utilities are prohibited or limited in owning generation (DER)
 ➢ Disincentive for utilities to pursue microgrids

 – Non-utility microgrid still needs access to distribution system
 ➢ Interconnection Rules
 ➢ Stand-by Charges
 ➢ Exit Fees
Opportunities for a New Regulatory Compact

• **State-level Initiatives:**

 – Grid modernization
 - NY REV, DC MEDSIS, IL NextGrid, among others

 – Microgrid tariffs
 - Hawaii and California

 – Grants and Programs
 - MA, NY, NJ, CT, CA, others
Opportunities for a New Regulatory Compact

• National/Federal-level Initiatives:
 – IEEE 1547
 ➢ Interconnection standards
 – FERC DER Aggregation Proceeding
 ➢ Participation in RTO markets
Opportunities for a New Regulatory Compact

• **Quid pro quo:**
 – Changes to the regulatory landscape should not be limited to the distribution utilities, microgrids should also see changes:
 ➢ **Definitions** regarding the different types, sizes of microgrids
 ➢ **Standards** applicable to microgrids
 ▪ Interconnection
 ▪ Reliability
 ▪ Cybersecurity
 ➢ **Regulation** of microgrids depending on type
 ▪ Utility? Electric supplier? Something else?
Opportunities for a New Regulatory Compact

• New Regulatory Compact:
 – If these initiatives are implemented, what would be the result?

 ➢ State-distribution utility compact
 ▪ The State grants the utility a franchise for distribution assets if…

 ➢ State-microgrid owner compact
 ▪ The State permits a microgrid owner to operate if…
Contact

Patrick L. Morand
Associate
Duane Morris LLP
505 9th Street, N.W., Suite 1000
Washington, DC 20004
(202) 776-7874 – Direct
(202) 277-4243 – Cell
PLMorand@duanemorris.com
www.duanemorris.com