BLENDING UTILITY DISTRIBUTION SYSTEMS INTO A CAMPUS ENVIRONMENT

STEVEN BUCKLER, PE

RMF Engineering
Reliability. Efficiency. Integrity.
BLENDING UTILITY DISTRIBUTION SYSTEMS INTO A CAMPUS ENVIRONMENT

INTRODUCTION
- PRESERVE CAMPUS AESTHETICS
- MINIMIZE CAMPUS IMPACT
- ACCESS & SECURITY

TOPICS
- SYSTEMS
- OPERATION
- SURFACE FEATURES
- RESTORATION
- IMPLEMENTATION
- MAINTENANCE
SYSTEM SELECTION

ABOVE GROUND ($)

DIRECT BURIED ($$)

CONCRETE TRENCH ($$$)

WALKABLE TUNNEL ($$$$$)
SYSTEM SELECTION

DIRECT BURIED PIPING

SHALLOW TRENCH
ROUTING PATHWAYS
ROUTING PATHWAYS
SECURITY & ACCESS

DIRECT BURIED VALVES

VALVE BOXES
SECURITY & ACCESS

UNDERGROUND VAULTS

HATCHES
SURFACE FEATURES

“GOOSENECK”

“STACK”

“COFFER”
SURFACE FEATURES

PAVEMENT Cuts

Turf Restoration
SURFACE FEATURES

DESIGN DEPTH
SURFACE FEATURES
STANDARDS IMPLEMENTATION

BEFORE

AFTER
LANDSCAPE DESIGN
TREE PROTECTION

The Morton Arboretum
PLANT TREES

Copyright 1993 by The Morton Arboretum
IMPLEMENTATION

TRENCHLESS TECHNOLOGY
IMPLEMENTATION

PHASING

› PHASE 1A
› PHASE 1B
› PHASE 1C
› PHASE 2
› PHASE 3
› PHASE 4
› PHASE 5
› PHASE 6
› PHASE 7
› PHASE 8

MINIMIZE IMPACT

› Utility Outages & Backfeeds
› Vehicular & Emergency Access
› Events & Proximity
› Schedule
MAINTENANCE
SUMMARY

〉 How can we:
 〉 Preserve Aesthetics?
 〉 Minimize Impact?
 〉 Provide Access and Security?

〉 Consider:
 〉 System Selection & Options
 〉 Routing Pathways
 〉 Surface Features
 〉 Landscape & Restoration Design
 〉 Implementation
 〉 Maintenance
QUESTIONS?