The Ideal CHP

A Decentralized DC Microgrid based on a Full Cycle Nat Gas Engines
Battery Energy Storage on a DC buss

OVERVIEW

FEB., 2016

PRESENTED BY

BENZ AIR ENGINEERING, CO., INC.

An Alternative to District Energy

Problems Solved

- Interconnection
 - ▶ Rule 21
 - Batteries for Energy Storage
 - No Departing Load
 - No Standby Charges
- ☐ Throttle Less Rich Burn
 - Constant efficiency regardless of output.
 - ▶ 40 to 300 to 40 kilowatt < 6 seconds
- Steam instead of Useless Hot Water
 - Heating
 - Cooling
- Emissions
 - ▶ Less than 12 ppm

Combined Heat Cooling and Power

Battery Energy Storage Without Interconnect Fees No Standby Charges

Things have Changed

- Costs of Energy
 - ▶ Natural gas <=\$2/mmbtu</p>
 - ▶ Wholesale Market electricity < \$30/mw-hr
- Renewable Generation
 - Power could go less than zero/mw-hr
 - Energy Storage
 - Edison is better than Tesla
 - The DC buss
 - Power is not generated when its needed.
- Heat sinks stink
 - Cant use hot water
 - Isothermal versus sensible
- Lower Emissions Required < 10ppm Nox</p>
- District Energy cannot Compete

Electrical Havoc on California's Grid.

Energy Storage

- Thermal Energy Storage
 - ▶ Ice, hot or cold water
- Electric Energy Storage
 - Batteries
 - In and out inefficiencies.
 - Pumped Hydro
 - in and out inefficiencies
 - Only so many high altitude lakes
 - Compressed Air
 - Inefficient
 - Not as developed

Natural Gas

The Best Battery

The Ideal Solution for Low Gas \$ & High Renewable

- Full Cycle Engine Throttleless
 - Constant heat rate regardless of output
 - Instantaneous Load Control
 - 40 to 300kw to 40 < 6 seconds
 - Ebullient Cooled 240F in 250F steam out
 - Stoichiometric exhaust is the perfect burner
 - ▶ 3-way catalyst < 3ppm Nox</p>
- Cheap CoGen
 - Low Penalty when not running
 - Double up the generation No Utility Standby Charges and long life
- ☐ The DC bus
 - 700 to 825vdc
 - DC bus Microgrid
- Battery Energy Storage
 - Cheap and Available Lead Acid
 - Slow the discharge rate by "borrowing " CHP output

The Ideal Solution for Low Gas \$ & High Renewable

- Full Cycle Engine Throttleless
 - Constant heat rate regardless of output
 - Instantaneous Load Control
 - 40 to 300kw to 40 < 6 seconds
 - ▶ Ebullient Cooled 240F in 250F steam out
 - Stoichiometric exhaust is the perfect burner
 - ▶ 3-way catalyst < 3ppm Nox</p>
- Cheap CoGen
 - Low Penalty when not running
 - Double up the generation No Utility Standby Charges and long life
- ☐ The DC bus
 - 700 to 825vdc
 - DC bus Microgrid

Throttle-Less Engine for Constantly Low Heat Rate Full Cycle

Steam & Direct Exhaust Absorbtion Chiller

The DC Microgrid

DC Microgrid

No Stand-by Charges

- SCE 6cents/kw-hr, ConEd 11cents/kw-hr
- Redundant Design for 300kw CHP will result in \$144k/year savings
- Constant Heat Rate No Energy Penalty
- Longer Life Span
- Automotive Big Block and Induction Motor/Generator

No Rule 21 Interconnect Headaches

- Design DC microgrid for one-way support from the Grid
- Diode Bridges (VFDs),
- □ No Rule 21 requirements

Energy Storage

- □ Large Incentives
 - California \$1350/kw-hr
 - ► New York \$2100/kw-hr
- Existing DC bus might as well use it.
- □ Dirt Cheap Lead Acid for less than \$200/kw-hr

Isolate Loads from Grid Interruption

- □ DC Microgrid supported by Engine HRSG Always Up
- Draw Grid power when its cheap and generate when expensive

Contact Information

Robert Benz 209-602-1019 Robert@benzair.com

> Benz Air Engineering, Co., Inc. 4061 Silvestri Lane, Bldg. 103 Las Vegas, NV 89120

702-597-4805

www.benzair.com

APPENDIX A. REFERENCE TECHNOLOGIES

- Nucleate Boiling Heat Transfer
- Nucleate Heat Transfer Film Coefficient
- Ebullient Cooling Flow Patterns
- Engine Absorption Cooling Example

Nucleate Boiling Heat Transfer 'Nucleate Cooling'

- 25 times the heat transfer rate of water convection
- Cooler Metal Temperatures with Hotter H20
- Uniform Head and Block Temperatures
- High Value Steam
- Low Parasitic Power 1/10th Coolant Flow of Typical Engine
- Fast Starting
- Higher Margin in Cooling Capacity
 - ▶ Typical engine cooling is limited to 180F outlet water.
 - Constant temperature of Nucleate Cooling lacks any Limitation.

Nucleate Heat Transfer Film Coefficient

- Note tremendous difference in heat transfer rate for a given temperature difference between metal and coolant.
- That difference needs to be minimized for durability. – thermal stresses.

Engine Absorption Cooling Example

