LEADING THE WAY CampusEnergy2022

Feb. 15-18 | Westin Boston Seaport District Hotel | Boston, Mass.

BLACKSTONE COMBUSTION TURBINE INLET COOLING RETROFIT

Douglas Schmidt Harvard University Engineering & Utilities

Electric Distribution

- Provides electricity through Harvard-owned microgrid
- 180 buildings served in Cambridge/Allston
- Utility delivers at seven separate Harvard switching locations
- Each Harvard station supplies a different area of the campus
- Delivery from stations via underground duct and manhole system
- Over 50 circuit-miles though 300 manholes

Chilled Water Service

- Provides chilled water for space cooling, and process (equipment) cooling
- 77 buildings served in Cambridge/Allston
- Two below grade production plants
 - Science Center
 - Northwest Labs
- 19,000 Tons production capacity
 - Seven chillers (2,000 to 5,000 Tons)
 - All electric
- Common distribution network
 - Two plants feed common distribution
 - ~3 ½ miles direct buried supply and return piping

Feb.15-18 | Westin Boston Seaport District Hotel | Boston

Steam Service

- Provides thermal energy for space heat, domestic hot water, and high pressure processes
- 170 buildings served in Cambridge/Allston
- One steam production plant, Blackstone
- 7.5 MW gas turbine/HRSG with 5 MW backpressure steam turbine for combined cycle CHP configuration
- Three direct-fired boilers with supply to steam turbine
- Multiple line distribution backbone through 2-1/2 miles of walkable tunnel

Blackstone Steam Plant, Utility Operation

<u>**1909**</u> – Operation by Cambridge Electric Light Co.

1930 – Modernization project adds two boilers and replaces reciprocating steam engines with steam turbines. Initiates steam supply service to Harvard campus. **1962** – Two boilers added for additional steam production capacity. 1962 Onward–Operation continues with progressively diminished capability, efficiency and reliability.

Blackstone Steam Plant, Utility Operation

Reciprocating Engine-Generator

1930 Plant Modernization

Blackstone Steam Plant, Utility Operation

<u>2004</u> – Acquired by Harvard to ensure security of campus steam supply.

2004 - Steam Plant Upgrade Project

- New boiler and 5 MW backpressure steam turbine for CHP capability.
- Replaced major BOP systems.
- Replaced plant electrical distribution.
- Critical structural repairs.

2014 - CHP Expansion Project

- 7.5 MW gas turbine and HRSG for combined cycle CHP operation
- Associated BOP additions and upgrades

Rigging In Boiler Economizer

Steam Turbine Pedestal Steel

Steam Turbine Rigged to Pedestal

Blackstone Steam Plant, CHP/Combined Cycle

Current Blackstone Operation
 Combined cycle/combined heat and power
 Up to 84% overall production efficiency
 Increased campus energy supply reliability
 Improved environmental performance
 Positive economic performance

What could be better?

CTG Capability and Campus Load vs. Dry Bulb Temperature

Room for Improvement

- Increased campus electrical load during warm weather
- CTG capability decreased by as much as 20% from 7.5 MW nominal rating as ambient temperature increases
- Increased need for costly import power characterized by decreased reliability

Potential Solution

• Gas turbine inlet cooling

Inlet Cooling Options

- Evaporative Cooling
 - Low initial cost
 - Cooling capability limited to within 1 to 2 degrees of wet bulb
- Chilled Water Cooling
 - Extensively utilized, well proven technology
 - Inlet air cooling to within the 45 to 50 deg-F range
 - Existing campus chilled water production and distribution infrastructure
 - CHW distribution nearby Blackstone steam distribution tunnel
 - Original CTG project design provision for future inlet air cooling
 - Ability to install indoors precludes Blackstone building structural and aesthetic concerns

CENTRAL CHILLER PLANT

DIRECT BURIED

CHW DISTRIBUTION

<u>CHW SUPPLY OPTION 1</u>
CHW from chiller plant
Direct entry into tunnel
Distant from Blackstone
Existing pipe congestion

<u>CHW SUPPLY OPTION 2</u>
CHW from chiller plant
Close proximity to Blackstone
Excavation across developed area

LEADING THE WAY CampusEnergy2022 Feb.15-18 Westin Boston Seaport District Hotel Boston, MA

STEAM DISTRIBUTION TUNNEL HARVARD Campus Services ENGINEERING & UTILITIES

HIGH RISE STUDENT RESIDENCES

BLACKSTONE

PLANT

OPTION 3

Add chiller

at Blackstone

Blackstone Inlet Cooling Dispatch Modeling

	No Inlet Cooling	Central CHW	Blackstone Chiller	
Gross Power (kWh)	Base	696,203	696,203	Hourly Dispatch Basis
Net Power (kWh)	Base	568,103	542,531	• Dispatch for steam production
Steam Production (Lb)	Base	142,675	142,675	•Coil design at 90.6 F DB/ 72.7 F V
Steam Vented (Lb)	Base	398,032	398,032	•Air leaving coil - 59 E
Electric Demand (kW)	Base	-813	-719	
Electric Purchased (kWh)	Base	-174,470	-148,898	•Coil operates when Tamb >/= 75 F
Electric Sold (kWh)	Base	393,632	393,632	•30 kW loss for coil delta-P
Chilled Water Use (Ton-Hrs)	Base	144,146	142,122	•18 kW for Option 3 circ pump
Heat Input (MMBtu)	Base	5,371	5,371	

Blackstone Inlet Cooling Economic Review

	Annual Saving	Payback (Yrs)		
Without Additional Load				-
Central Plant, Long Pipe Run	\$92,000	28.6	ECONOMIC Basis	<u>S</u>
Central Plant, Short Pipe Run	\$92,000	20.8	• 30-Year operating life	
Blackstone Chiller	\$78,000	20.6	•Natural Gas	\$8.19/MMBtu
With Central Plant Chiller Load	 Import Power 	\$0.1506/kWh		
Central Plant, Long Pipe Run	\$138,000	19.5	•Export Power	\$0.04/kWh
Central Plant, Short Pipe Run	\$138,000	14.2	•Capacity	\$120/kW-Yr
Blackstone Chiller	\$120,000	13.1		+ /

Blackstone Chiller

- 300 Ton Air Cooled Chiller
- 730 gpm coolant flow
- 42 deg-F supply/51 deg-F return temperature
- 309 kW power requirement
- Two separate refrigeration circuits, each with variable speed compressor
- 70% /40% water/glycol coolant
- Low noise design
 - 63 dBA at 30-feet
 - Low noise condenser fans
 - Full acoustic insulation including compressors

Blackstone Inlet Cooling Coil

- Standard OEM design for Taurus 70 turbine
 –95 F DB/76 F WB air side in
 –60 F DB/59 F WB air side out
 - -42 deg-F supply/51 deg-F return coolant
- OEM installation/operation guidelines

 Minimum 8-feet straight duct at coil outlet
 No coil operation below 55 F ambient
 Add insulation to inlet air plenum within turbine enclosure

- Diminished Inlet cooling benefit as ambient temperature decreases
- Risk of freezing and ice ingestion with coil operation below 55 deg-F ambient –Accelerated air flow at compressor inlet decreases dynamic temperature by 8 deg-F to 10 deg-F

Inlet Cooling Coil Installation Elevation

Chiller Installation and Final Setting

Coil Installation and Final Setting

Inlet Cooling Operation

JULY 21, 2020

7:00 AM, No Inlet Co	oling
CTG Gross =	5,603 kW
Ambient Capability =	7,043 kW
Power Import =	1,376 kW
Power Export =	0 kW
Blackstone Aux =	700 kW

<u>12:00 PM, Inlet Cooling</u>				
CTG Gross =	7,670 kW			
Ambient Capability = 6,746 kW				
Power Import =	478 kW			
Power Export =	0 kW			
Blackstone Aux =	841 kW			

Lessons Learned

Consider designing for inlet cooling even if not installing immediately.
 The seemingly obvious source for chilled water may not be the best.
 Work closely with turbine OEM during design and procurement.
 Added electric load maximizes inlet cooling benefit.

□ Understand project goals and operating environment.

THANK YOU

DOUGLAS SCHMIDT

