

Deploying more intuitive HMI graphics in accordance with the ISA standards

www.thermosystems.com

Introduction

 Are you / your operators able to understand the information displayed on your HMI?

 Have you ever found yourself searching for information on an HMI?

 Can you quickly and effectively recognize deviances in your process through your HMI?

ISA-101

- ISA 101 Human Machine Interfaces for Process Automation Systems. (July, 2015)
 - "provide guidance to design build, operate and maintain HMIs to achieve a safer, more effective process control system under all operating conditions."
 - "improve the user's abilities to detect, diagnose, and properly respond to abnormal situations."
- Standardized approach to HMI Design not restricted by brand of HMI, type of process, PLC, DCS, etc.
- Industry standard but not widely implemented due to release date.
- Not restricted to new systems. Older systems can be converted to some of the standards outlined with a quick turn over.

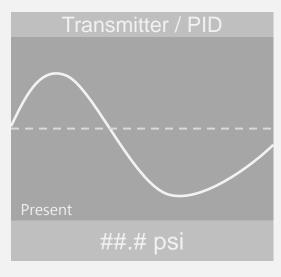
By implementing ISA 101 philosophies we have found that the goals set fourth are satisfied, allowing users to focus on information desired, better than the previous generation HMIs.

Overview of Topics

- Informational Guidelines Grouping, Coloring, Types of displays.
 - How it will immediately affect Operations.
- **2. Separation of Screens** Based on diversity of needs within the end user's organization.
 - To allow users to obtain the information they want
- 3. **Density of Information** How it affects the end user's understanding / operation / maintenance.

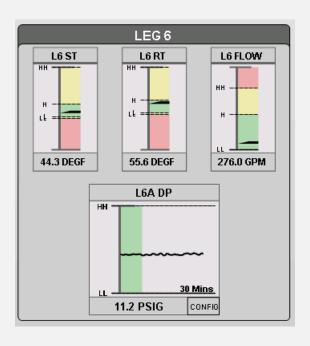
Informational Guidelines

Types of Displays


One display does not fit all scenarios...

Transmitter ##.# psi

Process Information



Process with Tolerances

Process Dependent e.g. PID Loop

Types of Displays - Example

Grouping of Information

When deployed correctly:

- 1. Allows users to quickly focus in on the information they need.
- 2. Can show a large amount of information in a simplified format.

Grouping is not present / not intuitive:

- Users will spend more time searching for information.
- 2. Information will become cluttered and possibly distracting.

Grouping – Example

PLANT EFFICIENCY					
	LIVE	DAILY	MONTHLY		
TOTAL POWER	1796.4 KW	12360.5 KWH	371200.4 KWH		
TOTAL COOLING	2309.0 TONS	15660.1 TONH	509881.9 TONH		
KW/TON	0.778	0.789	0.728		
СОР	4.520	4.456	4.831		
CHILI	LER 1	CHILI	LER 2		
POWER	0.0 KW	POWER	599.0 KW		
COOLING	0.0 TONS	COOLING	1213.3 TONS		
KW/TON	0.000	KW/TON	0.494		
DELTA T	5.0 DEGF	DELTA T	8.9 DEGF		
FLOW	0.0 GPM	FLOW	3289.0 GPM		
CHILI	LER 3	CHILLER 4			
POWER	537.0 KW	POWER	1.0 KW		
COOLING	1095.7 TONS	COOLING	0.0 TONS		
KW/TON	0.490	KW/TON	0.000		
DELTA T	8.1 DEGF	DELTA T	5.7 DEGF		
FLOW	3242.0 GPM	FLOW	0.0 GPM		

CONDENSER WATER PUMPS				
CWP-1, CWP-3, CV	VP-5	120.0 KW		
CWP-2, CWP-4		115.0 KW		
TOTAL		235.0 KW		
CHIL	LED WATER PU	IMPS		
CHP-1	0.0 %FS	121.5 KW		
CHP-2	57.3 %FS	123.9 KW		
CHP-3	0.0 %FS	123.9 KW		
CHP-4	0.0 %FS	0.0 KW		
CHP-5	57.5 %FS	0.0 KW		
TOTAL		369.3 KW		
<u>cc</u>	OOLING TOWE	RS		
CT-2	0.0 %FS	0.0 KW		
CT-3	0.0 %FS	0.0 KW		
CT-4	68.1 %FS	27.1 KW		
CT-5	67.6 %FS	27.0 KW		
TOTAL		54.1 KW		

Coloring

Why is Coloring Important?

- Users may be colorblind / vision deficient.
 - Certain color combinations may not be clear / visible to users.
- 2. Coloring will influence the amount of eyestrain user experience over extended time.
 - High contrast should be limited.
- Will affect users situational awareness.
 - When a consistent clear format is used, users can identify problems / alarms quicker because the problem will stand out.

Coloring - Examples

Normal

Transmitter

##.# psi

Eyestrain

##.# psi

Alarm

Transmitter

##.# psi

Colorblind

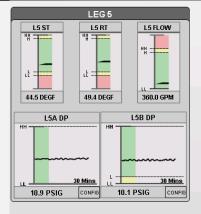
##.# ps

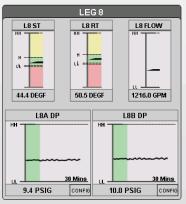
Coloring - Example

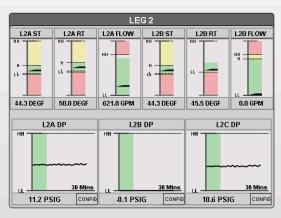
PRI CHWS TEMP	PRI CHWR TEMP	PRI CHW DELTA T	PRI CHWS FLOW	PCHWS/PCHWR DIFF PRESS	SEC CHW DELTA T	ETS#	PRI CHWS TEMP	PRI CHWR TEMP	PRI CHW DELTA T	PRI CHWS FLOW	PCHWS/PCHWR DIFF PRESS	SEC CHW DELTA T	ETS#
ETS-1-1TE-11000 42.9 DEGF	ETS-1-1TE-11001 52.8 DEGF	9.9 DegF	ETS-1-1FT-11007 1222 GPM	ETS-1-1PDT-11002 54.4 IN WC	6.4 DegF	1	ETS-1-1TE-11000 43.0 DEGF	ETS-1-1TE-11001 51.0 DEGF	8.0 DegF	ETS-1-1FT-11007 1469 GPM	ETS-1-1PDT-11002 77.2 IN WC	7.0 DegF	1
ETS-2-2TE-11000 42.1 DEGF	ETS-2-2TE-11001 54.1 DEGF	12.0 DegF	ETS-2-2FT-11007 1767 GPM	ETS-2-2PDT-11002 80.8 IN WC	11.8 DegF	2	ET S-2-2TE-11000 42.1 DEGF	ETS-2-2TE-11001 53.7 DEGF	11.6 DegF	ETS-2-2FT-11007 1805 GPM	ETS-2-2PDT-11002 118.9 IN WC	11.2 DegF	2
ETS-3-3TE-11000 43.0 DEGF	ETS-3-3TE-11001 60.2 DEGF	17.2 DegF	ETS-3-3FT-11007 578.0 GPM	ETS-3-3PDT-11002 53.6 IN WC	5.9 DegF	3	ETS-3-3TE-11000 43.0 DEGF	ETS-3-3TE-11001 59.2 DEGF	16.2 DegF	ETS-3-3FT-11007 695.0 GPM	ETS-3-3PDT-11002 76.5 IN WC	6.7 DegF	3
ETS-4A-4ATE-11000 42.0 DEGF	ETS-4A-4ATE-11001 47.8 DEGF	5,8 DegF	ETS-4A-4AFT-11007 933.0 GPM	(TS-4A-4APDT-1100): 105.0 IN WC	2.5 DegF	4	ETS-4A-4ATE-11000 42.2 DEGF	ETS-4A-4ATE-11001 46.6 DEGF	4.4 DegF	ETS-4A-4AFT-11007 1250 GPM	ETS-4A-4APDT-11002 126.1 IN WC	2.5 DegF	4
ETS_5_5TE_15012 AUTO 42.1 DegF	ETS_5_5TE_15013 AUTO 52.8 Deg F	10.8 DegF	ETS_5_5FT_15002 AUTO 2031 GPM	ETS_5_5PDI_15003 AUTO 0.0 IN WC	10.0 DegF	5	ETS_5_5TE_15012 AUTO 41.9 DegF	ETS_5_5TE_15013 AUTO 50.8 Deg F	8.9 DegF	ETS_5_5FT_15002 AUTO 2445 GPM	ETS_5_5PDI_15003 AUTO 0.0 IN WC	11.2 DegF	5
ETS-6-6TE-11000 41.8 DEGF	ETS-6-6TE-11001 45.4 DEGF	3.6 DegF	ETS-6-6FT-11007 272.0 GPM	ETS-6-6PDT-11002 78.9 IN WC	1.7 DegF	6	ETS-6-6TE-11000 42.0 DEGF	ETS-6-6TE-11001 44.9 DEGF	2.9 DegF	ETS-6-6FT-11007 369.0 GPM	ETS-6-6PDT-11002 91.6 IN WC	1.9 DegF	6
AUTO 42.3 DegF	ETS_7_7TE_17013 AUTO 57.1 Deg F	14.8 DegF	ETS_7_7FT_17002 AUTO 228.4 GPM	ETS_7_7DPT_17003 AUTO 107.4 IN WC	22.0 DegF	7	AUTO 42.3 DegF	ETS_7_7TE_17013 AUTO 57.0 Deg F	14.7 DegF	ETS_7_7FT_17002 AUTO 216.8 GPM	AUTO 156.2 IN WC	21.7 DegF	7
ETS-8-8TE-18000 42.0 DEGF	ETS-8-8TE-18001 46.4 DEGF	4.4 DegF	ETS-8-8FT-18004 151.0 GPM	ETS-8-8PDT-18002 0.0 IN WC	7.0 DegF	8	ETS-8-8TE-18000 42.1 DEGF	ETS-8-8TE-18001 46.0 DEGF	3.9 DegF	ETS-8-8FT-18004 183.0 GPM	ETS-8-8PDT-18002 0.0 IN WC	7.4 DegF	8
ETS-9-9TE-19000 42.5 DegF	ETS-9-9TE-19001 65.0 DegF	22.5 DegF	ETS-9-9FT-19004 209.0 GPM	ETS-9-9PDT-19002 116.7 IN WC	1.8 DegF	9	ETS-9-9TE-19000 42.6 DegF	ETS-9-9TE-19001 65.0 DegF	22.4 DegF	ETS-9-9FT-19004 220.0 GPM	ETS-9-9PDT-19002 170.4 IN WC	1.8 DegF	9
ETS-10-10TE-11000 42.6 DEGF	ETS-10-10TE-11001 49.3 DEGF	6.7 DegF	ETS-10-10FT-11007 352.0 GPM	ETS-10-10PDT-11002 108.7 IN WC	4.5 DegF	10	ETS-10-10TE-11000 42.5 DEGF	ETS-10-10TE-11001 49.0 DEGF	6.5 DegF	ETS-10-10FT-11007 369.0 GPM	ETS-10-10PDT-11002 162.2 IN WC	4.7 DegF	10
ETS-11-11TE-11000 42.3 DEGF	ETS-11-11TE-11001 54.4 DEGF	12.1 DegF	57.6 GPM ETS-11-11FT-11011 59.0 GPM	TS-11-11PDT-11002 133.9 IN WC	11.2 DegF	11	ETS-11-11TE-11000 42.2 DEGF	ETS-11-11TE-11001 53.3 DEGF	11.1 DegF	63.6 GPM ETS-11-11FT-11011 67.2 GPM	ETS-11-11PDT-11002 188.2 IN WC	11.1 DegF	11
ETS-12-12TE-11000 42.2 DEGF	ETS-12-12TE-11001 47.8 DEGF	5,6 DegF	ETS-12-12FT-11007 747.0 GPM ETS-12-12FT-11011 1102 GPM	TS-12-12PDT-11002 84.0 IN WC	3.7 DegF	12	ETS-12-12TE-11000 42.4 DEGF	ETS-12-12TE-11001 48.0 DEGF	5.6 DegF	ETS-12-12FT-11007 638.0 GPM ETS-12-12FT-11011 1121 GPM	TS-12-12PDT-11002 147.0 IN WC	3.1 DegF	12

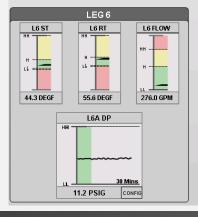
Separation of Screens

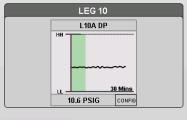
When should Screens be Separated?

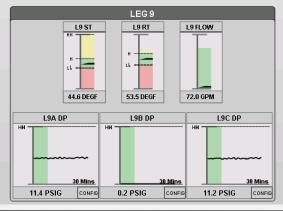

- 1. Information is not related to the process shown.
- 2. Too much information on the screen.
- 3. Information is does not pertain to primary users.

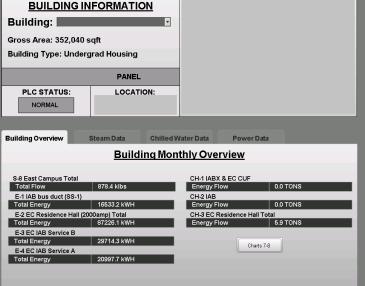

When should Screens be Separated?


Example - Chilled Water Plant – Leg Piping overview


- Operators want to know differential pressures to adjust pump speed setpoints. (Primary users)
- Managers / Admin want to know totalized tonnage for billing purposes / efficiency calculations. (Secondary users)
- Engineers want to know pipe diameters and use screen as a reference. (Tertiary users)


Operations Screen

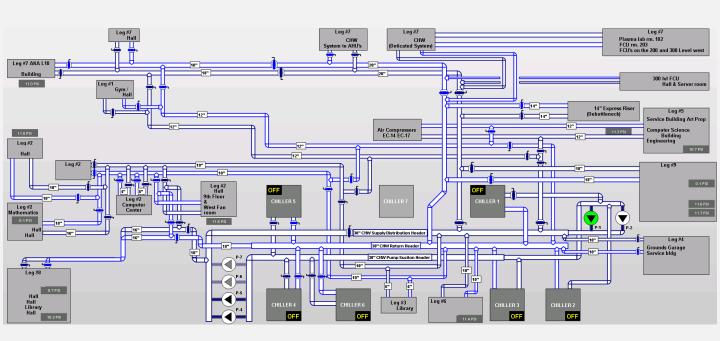




Management / Admin Screens

Monthly Totals			
December	75		
November	1		
October	29536		
September	116334		
August	150665		
July	129489		
June	107021		
May	67102		
April	16203		
March	7481		
February	477		
January	463		
Last Updated:	##:##:##		

Monthly Totals			
December	1848		
November	1249		
October	864		
September	206		
August	79		
July	247		
June	335		
May	642		
April	1237		
March	1403		
February	1922		
January	1715		
Last Updated:	##:##:##		


Monthly Totals			
December	1		
November	735		
October	4187		
September	8399		
August	12347		
July	12523		
June	9851		
May	5679		
April	5660		
March	3173		
February	1		
January	1		
Last Updated:	##:##:##		

Monthly Totals			
December	67514		
November	70529		
October	70048		
September	66290		
August	64925		
July	72153		
June	70149		
May	78620		
April	74856		
March	71879		
February	67572		
January	42886		
Last Updated:	##:##:##		

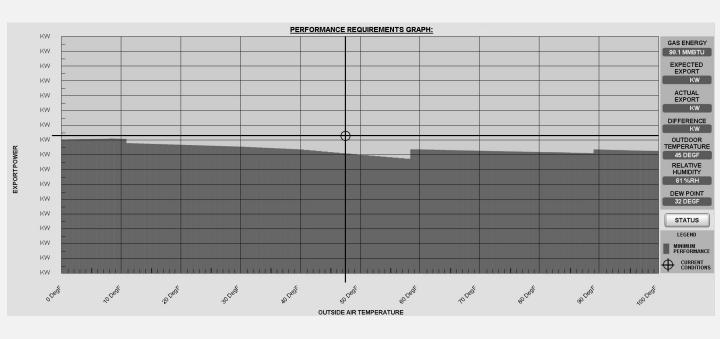
Monthly Totals			
December	112		
November	2314		
October	2654		
September	15162		
August	42419		
July	52230		
June	19635		
May	7823		
April	957		
March	418		
February	9		
January	8		
Last Updated:	##:##:##		

Monthly Totals		
December	87227	
November	87227	
October	87227	
September	87227	
August	87227	
July	87227	
June	87227	
May	87227	
April	167914	
March	192858	
February	111385	
January	111385	
Last Updated:	##:##:##	

Engineering Screen

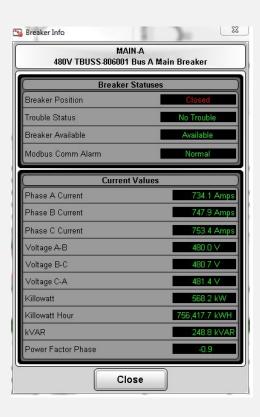


Density of Information


Density of Information

Showing related process information

- Increases users understanding of the process.
- Makes troubleshooting easier.
- Can usually be accomplished by simple techniques.


Combining Information - Example

Less is More

- 1. Too Much information on the screen:
 - Can cause confusion in operations.
 - Information is misinterpreted.
 - User has to focus on the information desired.
- 2. Less is more approach:
 - Information shown is important to the running process.
 - Detailed information is shown in popups / secondary screens.
 - Allows operations to focus on the process and still allows for additional information to be shown (in secondary screens / popups).

Less is More - Example

Lessons Learned

1. Planning is Key

- Removes secondary information from screens to increase performance.
- Working with Operations in development is critical to success –
 Operations will take ownership of the screens.
- Customer is aware of the design / knows the philosophy of showing / removing certain information from the primary screens.

2. Operations Will Adapt Quickly

 Operators typically struggle with changes to the system, however because the ISA Standard is focused around them (primary users), Operators adapt much quicker, and benefit faster.