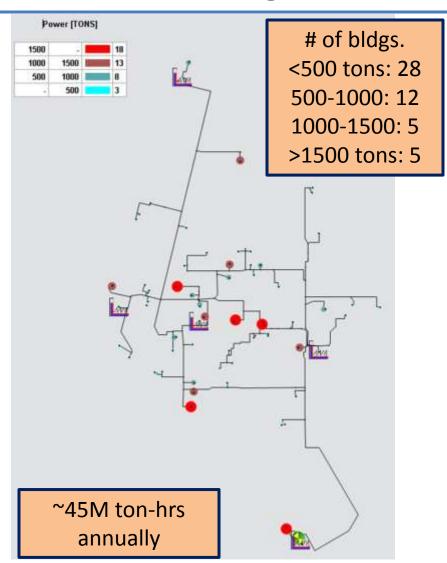

Minneapolis System

Foster House: 2,000 tons, electric

First Avenue: 9,000 tons, steam

Macy's: 2,700 tons, electric

Convention Center: 5,150 tons, electric/gas

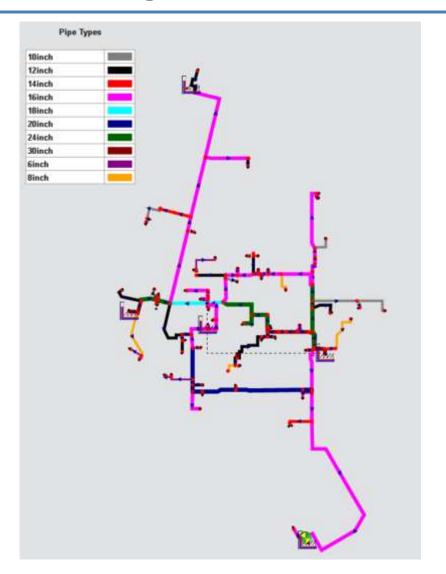

- One system in the NRG portfolio
- Operating since 1972, portions date to 1920's
- Capacity: 36,650 tons
- Demand: 27,500 tons
- More than 22 M sq. ft. cooled space
- 5 miles direct buried pipe

Main Plant:

4,000 tons, electric 17,800 tons, steam

Challenges & Need for Modeling

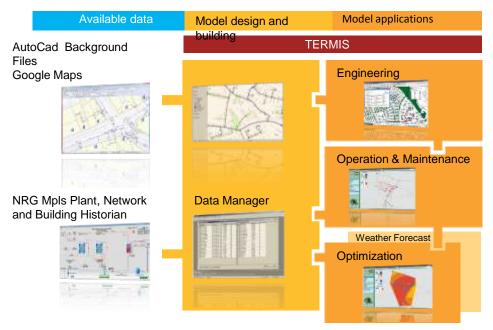
- Competitive market
 - Customer driven
 - Cost/Value
 - NRG initiatives
 - Efficiency & Sustainability
- Complex system
 - Multi-plant, chiller types
 - Broad customer mix
- Tools have to add value
 - Prefer in-house ability
 - Partnership with REO
 Termis Solution Providers


Modeling Objectives

- Flow modeling needed to accurately reflect system hydraulics
- System expansion studies & customer addition studies
- Evaluate operational flexibility & chiller dispatch
- Model and quantify cost savings associated with system/operational changes
- Future real-time feedback
 - Chiller dispatch, outage planning, performance feedback, monitoring telemetry
 - Target customers needing assistance to reduce consumption

Termis Modeling

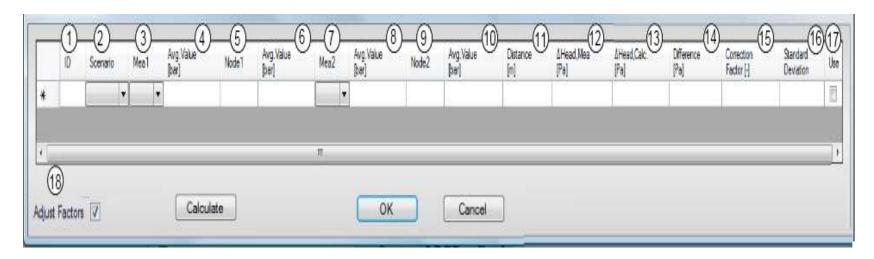
- Definitions/Input:
 - Bldg demand, ΔT
 - Supply temperature
 - Base Pressure
- Results/Output:
 - Plant production
 - System pressures
 - Flow rates
 - Pipe velocities
 - Pressure gradients
 - Temperatures



Modeling Information

- Real-time vs static model
 - "Seeing the world continuously with magnifying glasses vs one or few snapshot views"
- Real-time data import
 - Building usage/loads
 - Plant output and return
- Validation between measurements and predictions
 - Flow, Pressure, ΔP

Real-Time Modeling



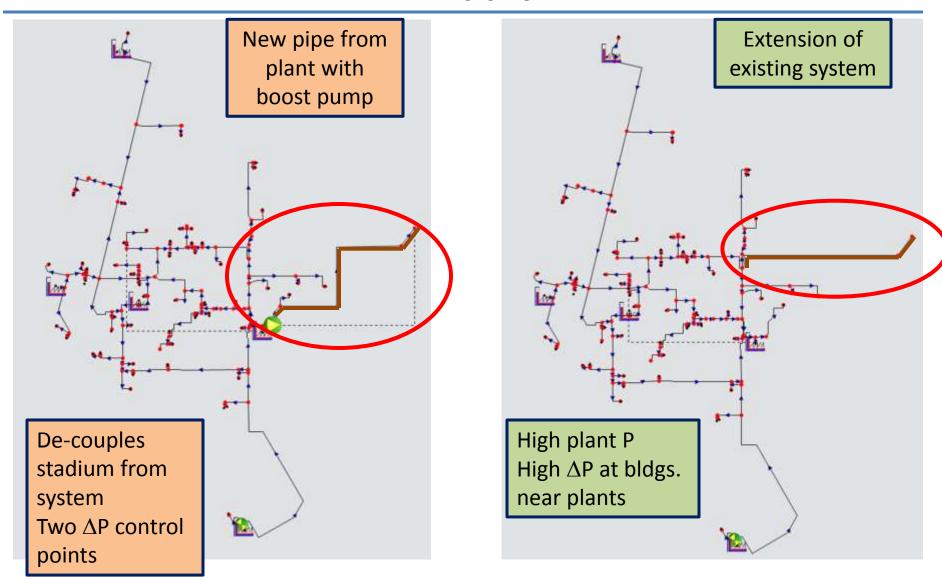
Real-Time measurements - about 380 building, network and plant meters/sensors (P,T, Tons and Q among others) - Every 5 minutes import of measurements and simulation

Model Calibration

Use of Real-Time model

System Tests

- Plymouth bldg pressure differential doesn't match predictions
- Pipe routing such that valves could be used to flow water via different routes
 - Locate possible source of calibration error



System Expansion Study

- New multi-purpose stadium
 - Have calibrated model to use for studies
 - Allowed system analysis prior to design specific tasks
- Chilled water system impacts
 - Evaluate two possible routes
 - Main plant connection
 - Extension of existing system
 - Assess overall impact on system
 - Plant P limits
 - Bldg P/ Δ P limits
 - Assess operational changes to meet new load
 - Which plants to operate
 - Stadium load variability
 - Provide design input

Stadium Supply Routes

Stadium Supply Decisions

- Modeling analysis drove to need to run separate distribution line from main plant to stadium
- Existing piping distribution system has potential choke point which drives overall system pressure too high
- End result is new "east loop" that is somewhat independent of remainder of system
- Boost pump to overcome system losses to stadium
- Need to limit stadium load during normal weekday, can provide excess capacity at night and on weekends

Conclusions and Lessons Learned

- Calibrated model of system complete
 - Real-time and offline model provides understanding of system hydraulics, limitations and bottlenecks
- Model available as engineering design tool for system expansion studies
 - Evaluate operational flexibility and chiller dispatch too
- Moving toward use by Operations and in the Control Room
- Modeling/calibration partnership worked very well
 - In-house knowledge of software and overall system performance is invaluable
 - Allows tighter specifications for design tasks

Thank you!

Carl Jauch, PE, Director, MEC Engineering
NRG Energy Center Minneapolis
612-436-4112, Carl.Jauch@nrgenergy.com
www.nrg.com

and

Thomas Lund-Hansen, President
Termis Solution Group North America
Reliability Efficiency & Optimization LLC

845-270-3897, <u>tlh@7T.dk</u> or <u>energyoptimizationefficiency@gmail.com</u> www.schneider-electric.com

Abstract

 The NRG Energy Center Minneapolis has developed a hydraulic model of their chilled water distribution system. It is be used for management, operation, engineering and maintenance of the 40,000 tons downtown system. Real-Time hydraulic modeling is a cornerstone of this new platform. This case study includes presentation and demo of the process, results of the work, how NRG has improved decision-making and savings.