LOW TEMPERATURE HEATING DISTRIBUTION SYSTEMS

David W. Wade, P.E.

IDEA's 27th Annual Campus Energy Conference
"Clean, Efficient & Resilient Energy"

February 18 - 21, 2014 • Atlanta Marriott Marquis • Atlanta, GA

- Toward 4th Generation District
 Heating Annex X Final Report
 IEA 2014
- District Heating Guide ASHRAE

Photographs

Rehau Logstor

Rovanco Uponor

Centratherm/Isoplus

Campbell & Associates, Inc.

ACKNOWLEDGEMENTS

OBJECTIVES

- Define low temperature district heating
- Describe low temperature systems
- Illustrate low temperature distribution techniques
- Identify benefits and drawbacks

ENERGY CASCADE

COMMON DISTRICT SYSTEM DISTRIBUTION TEMPERATURES

High Temperature Steam 250 psi 406° F

High Temperature Water 350° F - 450° F

Medium Steam 15-30 psi 250° F - 275° F

Temperature Hot Water 250° F - 350° F

Low Temperature Hot Water Below 250° F

Other Systems Tempered Water Below 90° F

Geothermal

CONVENTIONAL LOW TEMPERATURE SYSTEMS

180° F - 210° F Supply 20-30° Delta T Pressure 50-80 PSIG

- Applied with conventional 80% efficient natural gas and oil boilers
- Industry accepted coils and radiators
- Easy interface with steam systems

THE NEW PARADIGM LOW TEMPERATURE HEATING SYSTEMS

140° F - 150° F Supply
Max Pressure 90 PSIG – 125 PSIG

- Compatible with condensing boiler
- Compatible with input from heat pumps
- Compatible with solar or geothermal
- Many sources of waste heat

TRENDS SUPPORTING LOWER DISTRIBUTION TEMPERATURES

- More efficient buildings
- Need for lower life cycle costs
- Diversified heat sources
- Availability of new piping materials

MORE EFFICIENT BUILDINGS

 Current codes have reduced unit energy demand by 50% compared to 1974

 Planned codes will continue to reduce unit energy demand

Quest for "net zero" buildings

NEED FOR LOWER LIFE CYCLE COSTS

 To compete, district systems must have lower life cycle costs than independent building systems

This means high first costs for distribution must result in:

- Long life
- Low losses
- Low maintenance

HEAT LOSS HIGH V. LOW TEMPERATURE

- Heat loss is proportional to Delta "T"
- Low temperature systems encourage optimized network design using PUR insulation
- Variable supply temperature
- Twin pipe geometry reduces loss

DIVERSIFIED HEAT SOURCES

- Natural gas condensing boilers
- Solar
- Heat pumps
- Waste heat from power generation
- Waste heat from industrial processes

CONDENSING BOILERS

SOLAR

HEAT PUMPS

POWER GENERATION

Estimating Power Output Using Steam Inletand Exhaust Pressures

INDUSTRIAL PROCESSES

Waste Heat Recovery

- Kilns/ovens
- Process dryers
- Hot water bath discharge

LOW TEMPERATURE PIPING SYSTEMS

- Bonded piping systems
 - Steel carrier pipe
 - PUR insulation
 - HDPE jacket

<250° F < 350 psi Sizes up to 36" Welded joints

- PEX piping systems
 - PEX

<200° F < 85 psi Sizes up to 4" Mechanical joints

PROJECT EXAMPLES

- Chattanooga State Community College
- Goddard College

LOW TEMPERATURE SYSTEM ADVANTAGES

- Reduced heat loss
- Increased system life
- Interface with renewable resources
- Increased potential for CHP
- Higher efficiency interface with heat pumps and solar collectors
- Easier interface with thermal storage

LOW TEMPERATURE SYSTEM DISAVANTAGES

- Not appropriate for process needs
- Can require additional heat transfer surface
- Unit heat transport less for given pipe diameter
- Low temperature limited by domestic water heating

LOW TEMPERATURE HEATING DISTRIBUTION SYSTEMS

David W. Wade, P.E. dww@rdaeng.com

IDEA's 27th Annual Campus Energy Conference
"Clean, Efficient & Resilient Energy"

February 18 - 21, 2014 • Atlanta Marriott Marquis • Atlanta, GA

