Defining Sustainable Power

Leveraging a Microgrid Approach
DEFINING SUSTAINABLE POWER

Sustainable design and assessment systems like LEED and PEER™ transform industries and stimulate innovation:

- Sustainable performance and design criteria and language
- Make the business case
- Recognition
- Uncover hidden value
- Feasibility & sensitivity
- Performance specification
- Verify results and benefits
WHERE TO START?
MICROGRID APPROACH

Buildings ➔ Microgrids ➔ Utility ➔ ISO

- Cities/Utilities
- Private – campus, developments, network of buildings
Microgrids connect buildings to provide sustainable power, as well as, key customer and grid services.

Capabilities
- Islanding
- Renewable generation
- Demand reduction
- District energy
- Load shifting
- Auto-restoration

Performance Outcomes
- 50% Outages
- 50% Capital waste
- 50% Energy waste
- 25% Peak demand
- 50% Emissions
DEFINING SUSTAINABLE/SECURE POWER

Performance Excellence in Electricity Renewal™

ENERGY EFFICIENCY AND ENVIRONMENT
Promote energy efficiency and environmental responsibility

ENABLING CUSTOMER ACTION
Engage customers as partners and investors in sustainable power

SECURITY
Ensure the reliability, power quality and safety of electricity

RELIABILITY, POWER QUALITY, AND SAFETY

OPERATIONAL EFFECTIVENESS
Identify and eliminate waste to get more value out of investments

PEER
Sustainable Power Building Blocks

<table>
<thead>
<tr>
<th>Programs & Processes</th>
<th>Metrics</th>
<th>Capabilities</th>
<th>Prerequisites</th>
<th>Customer Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financing</td>
<td>DR Capability</td>
<td>Islanding</td>
<td>Dyn. Price</td>
<td>C</td>
</tr>
<tr>
<td>Aggregation</td>
<td>Value/Gap</td>
<td>Black Start</td>
<td>Data Privacy</td>
<td>O</td>
</tr>
<tr>
<td>Identify & Eliminate Waste</td>
<td>MAIFI</td>
<td>Solar</td>
<td>Improvement Plan</td>
<td>R</td>
</tr>
<tr>
<td>Risks Analysis</td>
<td>PQ</td>
<td>Looping</td>
<td>Cyber Security</td>
<td>E</td>
</tr>
<tr>
<td>Procurement</td>
<td>CO₂/NOₓ/SOₓ</td>
<td>Dist. Energy</td>
<td>Safety</td>
<td></td>
</tr>
<tr>
<td>Financing</td>
<td></td>
<td>CHP</td>
<td>Local Air Permit</td>
<td></td>
</tr>
</tbody>
</table>

- **Prerequisites**: Safety, Cyber Security, AMI/SCADA, Procurement, Financing
- **Capabilities**: Net Metering, Supply Choice, Load Shift, Ancillary Services, Black Start, Islanding, Solar
- **Metrics**: DR Capability, Value/Gap, MAIFI, PQ, % Ren. & CHP, Load Curve, SAIDI/SAIFI, SEI
- **Customer Requirements**: C, O, R, E
Value and Gap

Quantify value of service that project microgrid provides for the bulk grid.

Quantify the gap in performance, provide justification for investment and path for improvement.

Baseline
PERFORMANCE

Upper Limits
OF PERFORMANCE

Definition for upper limits of grid performance

The ultimate measure of perfection is that our electric system does no harm – economic, social or environmental.

- Paul O’Neill

Value

GAP

Improved
PERFORMANCE

Baseline Performance

Definition for upper limits of grid performance

The ultimate measure of perfection is that our electric system does no harm – economic, social or environmental.

- Paul O’Neill
CLOSING THE GAP = COST SAVINGS

OPERATIONAL EFFECTIVENESS CATEGORY

Estimated Gap

Baseline
- Load duration curve
- Dynamic Pricing

Load Response
- Thermal Storage
- Load Automation

Energy Efficiency
- CHP
- Solar PV

Improved Rate
- Improved
- Estimated Gap

Upper Limits
- Achieved Value
Value (50,000 MWh/10MW)

<table>
<thead>
<tr>
<th>Performance Criteria</th>
<th>Baseline</th>
<th>Current</th>
<th>Factors</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price, $/MWh</td>
<td>45</td>
<td>30</td>
<td>Real-Time</td>
<td>$750,000</td>
</tr>
<tr>
<td>Demand Charge</td>
<td>10</td>
<td>7</td>
<td>$14/kW/mo</td>
<td>$504,000</td>
</tr>
<tr>
<td>Source Energy, MMBtu/MWh</td>
<td>9.2</td>
<td>5.3</td>
<td>$4/ MMBtu</td>
<td>$780,000</td>
</tr>
</tbody>
</table>

$2,034,000
RELIABILITY PERFORMANCE CRITERIA

Capabilities

• Islanding
• Redundant Supply
• Redundant Distribution
U.S. Interruption Minutes by Utility

Legend
- NW
- MW
- SW
- South
- Mid-Atlantic
- NE
- SE
- Other

Data source: IEEE 2011, http://grouper.ieee.org/groups/td/dist/sd/doc/

- Average = 310
- UT Austin = 9.7
- 3rd Quartile
- 4th Quartile

1 day = 1,440 minutes
Microgrid Capabilities - Reliability

0. Baseline
1. Undergrounding
2. Distribution Redundancy
3. Alternative Sources of Supply
4. Islanding
Islanding Capability

- Life Safety Gen
- Chilled Water Storage
 - 4 Million Gallons
- 56 MW of Steam Turbines
- Base-load Tri-generation and district energy (in lieu of boiler)
- One 34 MW and one 43 MW gas turbine with inlet cooling

Number of operating hours at the demand level

8760
Power Oases Certification

• Life-safety diesels is not sufficient (i.e. immediate response – hours, egress emergency lights)

• Power Oases will be recognized for providing critical community and grid service

• Receive credit for powering entire building or campus for weeks to assist with recovery services

• Receive credit for providing grid service during normal grid operation (e.g. price/demand response, power quality)

• Demonstrate protection from threats

• Police/Fire
• Medical Center
• Assisted Living
• Schools
• Communications
• Shelters
• Hotels
• Fuel Stations
• Water, Waste Water, Flood Protection
• Residential Towers
Power Quality Measurements

CRITERIA DEFINITION

Metrics that describe the electric power that drives an electric load and the load’s ability to function properly.

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transients</td>
<td>discharge, load or capacitor switching</td>
<td>filters, isolation transformers</td>
</tr>
<tr>
<td>Oscillatory Transients</td>
<td>line/cable switching, capacitor or load switching</td>
<td>Surge Arrestors, filters, isolation transformers</td>
</tr>
<tr>
<td>Sags / Swells</td>
<td>Remote systems, faults</td>
<td>Ferroresonant transformers, energy storage</td>
</tr>
<tr>
<td>Undervoltage/Overvoltage</td>
<td>Motor starting, load variations, load dropping</td>
<td>Voltage regulators, Ferroresonant transformers</td>
</tr>
<tr>
<td>Harmonic Distortions</td>
<td>Nonlinear loads, system resonance</td>
<td>Active or passive filters, transformers with cancellation</td>
</tr>
<tr>
<td>Voltage Flicker</td>
<td>Intermittent loads, motor starting, arc furnaces</td>
<td>Static VAR compensator</td>
</tr>
</tbody>
</table>

Rule of Thumb

Keep Impact Loads $\Delta \text{VAR} < 15\% \text{ VA}_{\text{short_circuit}}$

- Critical to digital processes
- Delicate manufacturing equipment
- Sensitive testing and industrial processes
RISK MITIGATION CRITERIA

Failure Modes and Effects Analysis (FMEA)

<table>
<thead>
<tr>
<th>Item</th>
<th>Failure</th>
<th>Cause</th>
<th>Local Effect</th>
<th>System Effect</th>
<th>Probability</th>
<th>Severity</th>
<th>Detection</th>
<th>Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substation #2 Overcurrent protection device opens on high load</td>
<td>Overcurrent protection device opens on high load</td>
<td>High loads on Circuit 9 due to recent additional loads added</td>
<td>Circuit #9 automatically switches to supply from Substation #4</td>
<td>Added load on Substation #4 exceeds capacity and trips regional protection device for area-wide black-out</td>
<td>Moderate</td>
<td>Recent load additions have increased this probability</td>
<td>HIGH Commercial customers value their operations at $15 million per outage.</td>
<td>Power readings at Substation #2 for Circuit #9.</td>
</tr>
</tbody>
</table>

- Identify ALL possible failures in every component, assembly and sub system of the system.
- Determine how to Mitigate the failure
- Prioritize list and take action

Power System Reliability Engineering References:
- IEEE 3006 Series Power System Reliability (formerly IEEE gold Book)
- IEC 60812 Analysis techniques for system reliability - Procedures for FMEA
Reliability Summary and Score

UT Austin Results

Reliability, Power Quality and Safety

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Max Points</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustained Interruptions</td>
<td>25</td>
<td>23.0</td>
</tr>
<tr>
<td>Momentary and Other Interruption Indices (bonus criteria)</td>
<td>10</td>
<td>0.0</td>
</tr>
<tr>
<td>Capabilities for Reliability</td>
<td>55</td>
<td>43.0</td>
</tr>
<tr>
<td>Power Quality Improvement (bonus criteria)</td>
<td>10</td>
<td>5.0</td>
</tr>
<tr>
<td>Risk Mitigation</td>
<td>20</td>
<td>14.0</td>
</tr>
<tr>
<td>Innovations (bonus criteria)</td>
<td>5</td>
<td>4.5</td>
</tr>
<tr>
<td>Core Points</td>
<td>100</td>
<td>80.0</td>
</tr>
<tr>
<td>Bonus Points (Limited to 15 points)</td>
<td>15</td>
<td>9.5</td>
</tr>
<tr>
<td>Subtotal (Limited to 100 points)</td>
<td>89.5</td>
<td></td>
</tr>
</tbody>
</table>

Highlights:
- 3 year average ASAI of 0.999982
- Distribution Looping and Alternative Feeds
- Islanding Capability
- Power Resiliency for Essential Services
- Risk Mitigation – Moved critical pumps above flood plain
Reliability Benefits – Ice Calculator

UT Austin:

- 50,000 residential customers
- 155 commercial customers
- SAIDI and SAIFI based on three year average

<table>
<thead>
<tr>
<th>Reliability Savings</th>
<th>Baseline</th>
<th>UT Austin</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAIDI</td>
<td>310.0</td>
<td>9.7</td>
</tr>
<tr>
<td>SAIFI</td>
<td>1.600</td>
<td>0.040</td>
</tr>
<tr>
<td>LBNL Reliability Cost ($)</td>
<td>$ 1,523,538</td>
<td>$ 48,278</td>
</tr>
<tr>
<td>Reliability Savings ($)</td>
<td>$ 1,475,260</td>
<td>$ 1,475,260</td>
</tr>
</tbody>
</table>
ENERGY EFFICIENCY AND ENVIRONMENTAL Performance Criteria

• Efficiency (SEI) \(\text{MMBtu/MWh} \)

• Emissions
 \(- \text{CO}_2\text{e, NOx, SO}_2 \) \(\text{lb./MWh} \)

• Water \(\text{gal/MWh} \)

• Solid Waste \(\% \text{ Recycled} \)

Capabilities:

• Local clean power (e.g. solar, cogeneration)

• Renewable energy credits, REC’s

• Environment improvements (e.g. aesthetics)
Energy Efficiency

Source Energy Intensity (MMBtu/MWh) by State

UT Austin = 5.5

Texas = 9.2
Environmental Metrics and Benefits

<table>
<thead>
<tr>
<th></th>
<th>United States</th>
<th>Texas (benchmark)</th>
<th>UT Austin</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ Intensity</td>
<td>1391</td>
<td>1565</td>
<td>775</td>
</tr>
<tr>
<td>(lb/MWh)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOₓ Intensity</td>
<td>1.37</td>
<td>1.12</td>
<td>1.29</td>
</tr>
<tr>
<td>(lb/MWh)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO₂ Intensity</td>
<td>2.77</td>
<td>2.18</td>
<td>0.02</td>
</tr>
<tr>
<td>(lb/MWh)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Usage</td>
<td>487</td>
<td>332</td>
<td>106</td>
</tr>
<tr>
<td>(gal/MWh)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste</td>
<td>55.3</td>
<td>69.9</td>
<td>100</td>
</tr>
<tr>
<td>(% Recycle)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Benefits

- Energy Efficiency Savings Equivalent to 12,000 Net Zero Homes
- CO₂ Savings Equivalent to taking 26,500 automobiles off the road
LEVERAGING PROCUREMENT EXAMPLE

Illinois Power Agency Default Electricity Mix
- **NUCLEA**: 35%
- **COAL**: 43%
- **WIND**: 18%
- **HYDRO**: 1%
- **BIOMASS**: 2%
- **SIMPLE CYCLE NATURAL GAS**: 1%

Chicago Electricity Mix
- **WIND**: 5%
- **COMBINED CYCLE NATURAL GAS**: 95%

Energy Efficiency and Environment Methodology
Chicago CCA Energy Efficiency Benefit

ENERGY CONSUMED

BEFORE ~ 13,000,000 MWh_s (SEI 10.5)
AFTER ~ 9,200,000 MWh_s (SEI 7.5)
SAVINGS ~ 3,800,000 MWh_s

SEI Ratio = SEI / 3.4
MWh_{source} = SEI Ratio * MWh_{e}

SEI RATIO

3 : 1
2 : 1

units of input fuel to deliver one unit of electricity
OPERATIONAL EFFECTIVENESS
MAKING THE BUSINESS CASE

Capabilities

• Load Curve
• Demand Response
• Price Response
Load Duration % of Peak = \(\frac{\text{Total annual electricity purchased kWh}}{\text{Peak purchased kWh} \times 8760 \text{ hours}} \)

Baseline Calculation

Total Purchased: 200,000 MWh
Peak Purchased: 65 MW

Load Duration % of Peak:
\(\frac{200,000}{(65 \times 8760)} = 35\% \)
CAPABILITIES FOR OPERATIONAL EFFICIENCY CRITERIA

Load Duration Curve – Improved

Improvement Calculation

GO TO: EXERCISE SHEET

REDUCED Peak Purchase: 65 - 40 = 25 MW

New Energy Purchase: 118,000 MWh

Load Duration % of Peak:

\[
\frac{118,000}{(25 \times 8760)} = 54\%
\]

NEW PEAK DEMAND
Demand Response Capability

\[
\text{Demand Response Capability (\%) = \frac{\text{Total DR capacity MW}}{\text{Peak annual demand MW}}} \]

Improvement Calculation

Peak Annual Load Demand: 65 MW
Steam Turbine + Storage: 25+ MW
CHP Turbine Capacity: 25+ MW
Demand Response Capability: \((25 + 25) / 50 = 100\%\)
Operations Summary and Score

UT Austin Results

Operational Effectiveness

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Max Points</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational Capability (Load Curve & DR)</td>
<td>83</td>
<td>62.0</td>
</tr>
<tr>
<td>Actual Estimated Value</td>
<td>26</td>
<td>23.0</td>
</tr>
<tr>
<td>Estimated Gap (bonus criteria)</td>
<td>8</td>
<td>4.0</td>
</tr>
<tr>
<td>Innovations (bonus criteria)</td>
<td>5</td>
<td>4.3</td>
</tr>
<tr>
<td>Core Points</td>
<td>100</td>
<td>79.0</td>
</tr>
<tr>
<td>Bonus Points</td>
<td>22</td>
<td>14.3</td>
</tr>
<tr>
<td>Total (Limited to 100 points)</td>
<td></td>
<td>93.3</td>
</tr>
</tbody>
</table>

Highlights:
- 78% Load Duration Percent of Peak
- 88% System Energy Efficiency
- Substantial Value in Demand Charge savings and Reliability
- Primary Opportunity Cost is associated with increasing local renewables
Customer Capability = Grid Support

Microgrid Grid Services
- Real-time & day-ahead response
- Demand response
- Capacity
- Voltage support
- Reactive power
- Frequency
- Utility event support

Number of operating hours at the demand level: 8760
CUSTOMER ENGAGEMENT

- AMI - Access to data
- Dynamic pricing
- Interconnect
- Net metering
- Incentives

- Contribution
 - DR
 - Local Gen
 - Services
Managing Demand with Storage

Load Requirements for hot day in August

- **Load shifted to lower price**
- **Peak reduced**

Same amount of energy is sold while peak is reduced by 25%

- **Thermal Storage**
- **Baseline**
- **Time-of-Use**
Perfecting Power at University of Texas

87% System Efficiency

Combustion Turbine

Steam Turbine

Chillers

Chilled Storage

Electricity

Chilled Water

Campus

Natural Gas

Recovered Heat

Cleaner Fuel

Recovered Heat

Load Balancing

Steam

Image source: http://philosophy.commons.gc.cuny.edu/files/2012/12/austin.jpg

Customer Summary and Score

UT Austin Results

Enabling Customer Action

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Max Points</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tools and Information</td>
<td>10</td>
<td>0.0</td>
</tr>
<tr>
<td>Standard Processes and Policies (N/A for campus)</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Programs and Incentives</td>
<td>5</td>
<td>0.0</td>
</tr>
<tr>
<td>Customer Contribution</td>
<td>85</td>
<td>60.0</td>
</tr>
<tr>
<td>Innovations (bonus criteria)</td>
<td>20</td>
<td>19.0</td>
</tr>
</tbody>
</table>

Core Points

<table>
<thead>
<tr>
<th></th>
<th>Max Points</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>60.0</td>
</tr>
</tbody>
</table>

Bonus Points

<table>
<thead>
<tr>
<th></th>
<th>Max Points</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
<td>19.0</td>
</tr>
</tbody>
</table>

Subtotal (Limited to 100 points)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>79.0</td>
</tr>
</tbody>
</table>

Highlights:

- Local Clean Generation from high efficiency CHP
- Local Demand Response Capability from excess local generation capacity
- Several innovations including lighting reduction program and software that maximizes chiller and generation efficiency
Overall UT Austin Score: 356 / 400

Energy Efficiency and Environmental

94

Reliability, Power Quality and Safety

90

Operational Effectiveness

93

Enabling Customer Action

79
LEVERAGING VALUE/GAP TO VERIFY/MAKE THE BUSINESS CASE

TOTAL GAP = $3,850,000
- Reliability OC $50,000
- Energy Waste OC $3,630,000
- Demand Charge OC $170,000
- Real Time Price OC $0

TOTAL VALUE = $13,400,000
- Reliability Value $1,500,000
- Energy Efficiency $6,500,000
- Local Generation Savings ($3,100,000)
- Demand Charge $8,500,000

Site Characteristics
- **Baseline**
 - Facility Demand: 51 MW
 - Facility Usage: 355,000 MWh
 - Electricity Supply/T&D: $75/MWh
 - Demand Charge: $14/kW/month

Performance Indicators

<table>
<thead>
<tr>
<th>Performance Indicators</th>
<th>Baseline</th>
<th>Current</th>
<th>Upper Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEI, MMBtu/MWh</td>
<td>9.2</td>
<td>5.3</td>
<td>3.0</td>
</tr>
<tr>
<td>Local Generation, MWh</td>
<td>0</td>
<td>348k</td>
<td>355k</td>
</tr>
<tr>
<td>Demand Charge/ MWh</td>
<td>$25</td>
<td>$0.50</td>
<td>$0</td>
</tr>
<tr>
<td>SAIDI, min</td>
<td>310</td>
<td>9.7</td>
<td>0</td>
</tr>
</tbody>
</table>
PEER USES

- Build a **common language** and shared vision
- Make the **business case** for investment
- **Promote** great performance **and reveal hidden value**
- **Benchmark** to an industry standard
- Create innovative **conceptual designs**
- Develop **performance based specification and policy**
- Measure and **verify benefits/financial projections**
- Establish a **competitive differentiation**