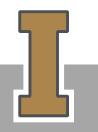
UNIVERSITY OF IDAHO COOLING TOWER CASE STUDY

(ENHANCING WATER SUSTAINABILITY)

By: Tyler J. Young (Presenting) Dr. Behnaz Rezaie, PE Applied Energy Research Lab (AERL)


OUTLINE:

- Water scarcity
- Case study: University of Idaho (UI)
- Facts, Objectives, Technical Solutions
- Case Study (Three Options)
- Analysis (Three Options)
- Pros and Cons (Three Options)
- Performance Comparison
- Conclusion
- Future Work

WATER SCARCITY

- Available freshwater is 2.5%
- ~2 billion people have little clean water access (WHO)
- 88 developing countries (half the world's population) do not have clean water
 - 80-90% of diseases and 30% of associated deaths
- Water usage doubles every 20 years

CASE STUDY: UNIVERSITY OF IDAHO

UI, Moscow campus district heating and cooling plant:

- heating and cooling for up to 65 buildings
- Fuel:
 - o Biomass, 95% wood chips
 - Natural gas, 5%

Figure 1: This is the UI district heating and cooling plant

FACTS:

- UI district cooling loses 2,000,000 gal through cooling towers
- Currently, 100% of cooling tower water is lost
- The Palouse Region aquifer is depleting faster than it is replenishing

Figure 2: The cooling towers (on the roof) for the district heating and cooling plant

OBJECTIVES

• To capture the vapor to reuse in the cooling cycles

Condition:

- Make-up water needs to be filtered before it can reenter the system
 - Preclude pump fowling
 - Reduce pump and pipe corrosion

TECHNICAL SOLUTIONS:

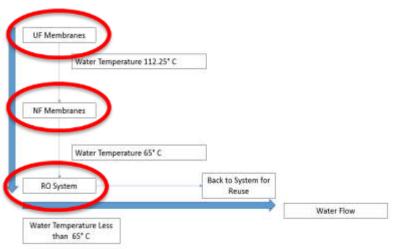
- **Option 1:** Modifying the current hot lime softening (HLS) system by adding a Reverse Osmosis (RO) system (which is available in the plant)
- **Option 2:** Membrane filtration, utilizing a staged filter arrangement
- **Option 3:** Proprietary method

OPTION 1

Integrated HLS with RO system

- 1. Add the available RO system to current HLS
- 2. Using RO needs a heat exchanger to reduce the water temperature from 82°C to 65°C

Hot Lime Softener			
Water Tempe	erature 112. 25° C		
Charcoal Filters			
Water Tempe	erature 82. 22° C		
Heat Exchanger	RO System	Back to System for Reuse	
Water Temperature Less than 65° C	Water Temperature Less than 65° C	~	Flow of Water
Figure 3	: Flow of water for option	1	


University of Idaho

College of Engineering

OPTION 2

Utilizing membrane filtration

- 1. Replacing HLS and charcoal with membrane filtration
 - a. utilize Ultrafiltration (UF) membranes (Pore size 20,000 DA down to 1,000 DA)
 - b. utilize Nanofiltration (NF) membranes (Pore size 300 DA down to 150 DA)
- 2. Using available RO system

Figure 4: Flow of water for option 2

OPTION 3

Proprietary method based upon spherical adsorbent materials and forms

1. Replacing the HLS with Proprietary system

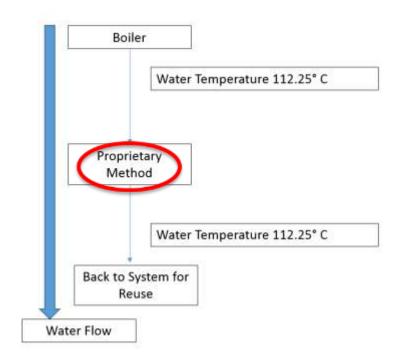


Figure 5: Flow of water for option 3

ANALYSIS: OPTION 1

Integrated HLS with RO system

- HLS recovers 99 liters out of 100 liters of water
- RO recovers 70 liters out of 100 liters of water
- Integrated system recovers 69.3%

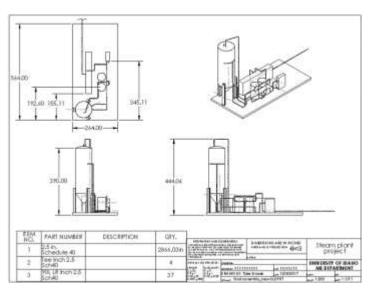


Figure 6: Schematic of HLS System

ANALYSIS: OPTION 2

Utilizing membrane filtration

Integration of UF, NF, and RO membranes

- UF system recovers 95 liters out of 100 liters of water
- NF system recovers 85 liters out of 100 liters of water
- RO system recovers 70 liters out of 100 liters of water

Integrated system recovers 59.5%

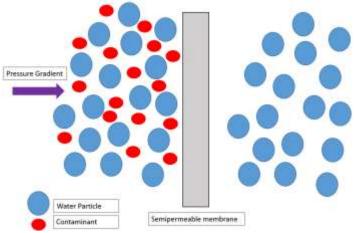


Figure 7: How Membrane Filtration Works

University of Idaho College of Engineering

ANALYSIS: OPTION 3

Proprietary method based upon spherical adsorbent materials and forms

- Proprietary recovers 99 liters out of 100 liters of water
- Integrated system recovers 99%

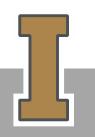


Figure 8: Absorbent Materials

PROS & CONS: OPTION 1

Integrated HLS with RO system

- Pros:
 - The low initial investment (All equipment are available)
- Cons:
 - The high operating cost
 - Obsolete Technology

PROS & CONS: OPTION 2

Utilizing membrane filtration

- Pros:
 - Less operating cost
 - Low maintenance cost
 - Advanced Technology
- Cons:
 - Lowest water recovery percentage

PROS & CONS: OPTION 3

Proprietary method based upon spherical adsorbent materials and forms

- Pros:
 - Low operating cost
 - Lowest maintenance cost
 - Modern Technology
- Cons:
 - High initial cost

PERFORMANCE COMPARISON

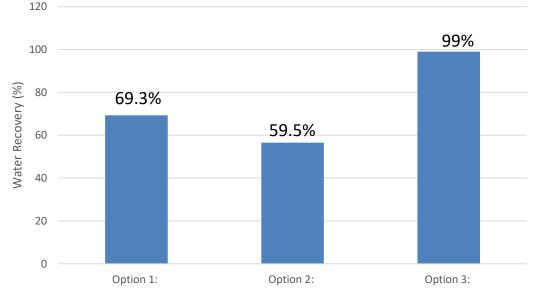


Figure 9: Water recovery of technology options

University of Idaho College of Engineering

CONCLUSIONS

To reduce/eliminate the fouling and corrosion in piping and equipment:

- Suggested 3 different options for purification of the inlet water into the UI district heating & cooling:
 - Option 1: Integrated HLS with RO system, Purification 69.3%
 - Option 2: Utilizing membrane filtration, Purification **59.5%**
 - Option 3: Proprietary method, Purification 99%

Figure 10: Residue in the Pipe (UI Energy plant)

FUTURE STUDY

- Financial comparison of 3 options
- For all filtration alternatives:
 - Energy efficiency analysis
 - Exergy efficiency analysis

