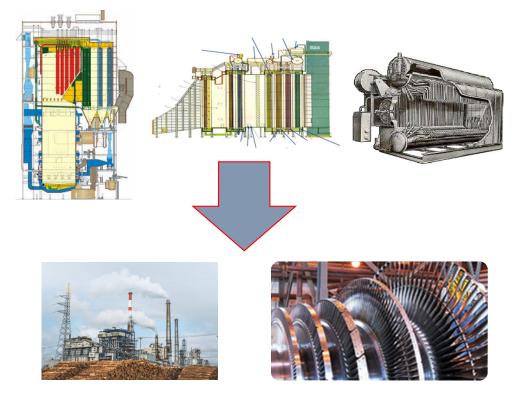


ENVIRONMENTAL FOOTPRINT BENEFITS FROM BOILER WATER TREATMENT IMPROVEMENTS

Richard Salazar Senior Boiler Product Applications Engineer – SUEZ Water Technologies & Solutions

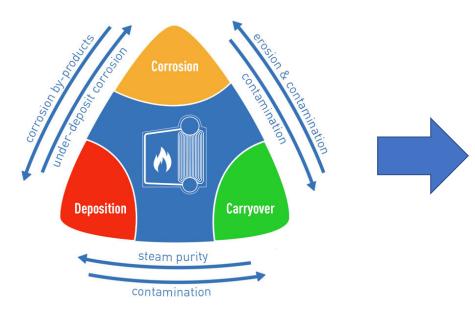
On Behalf Of

Gregoire Poirier Richer Technical Marketing Manager – SUEZ Water Technologies & Solutions


AGENDA

- Purpose of boiler water treatment
- Plains Midstream Gas Plant Case Study
 - Overview of boiler system and design limitations
 - Environmental footprint boiler impact
 - Environmental and Economic benefits of boiler treatment optimization

• Steam generation to support production/operation



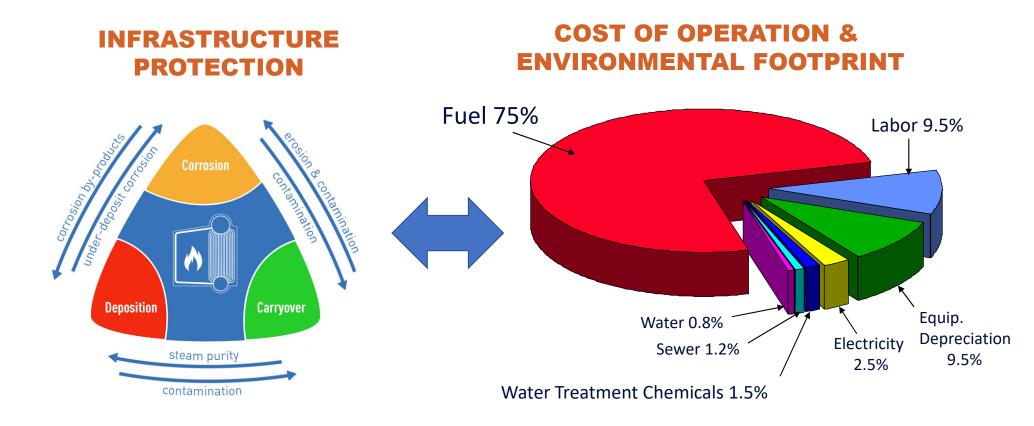
- Asset protection:
 - Reliability

INFRASTRUCTURE PROTECTION

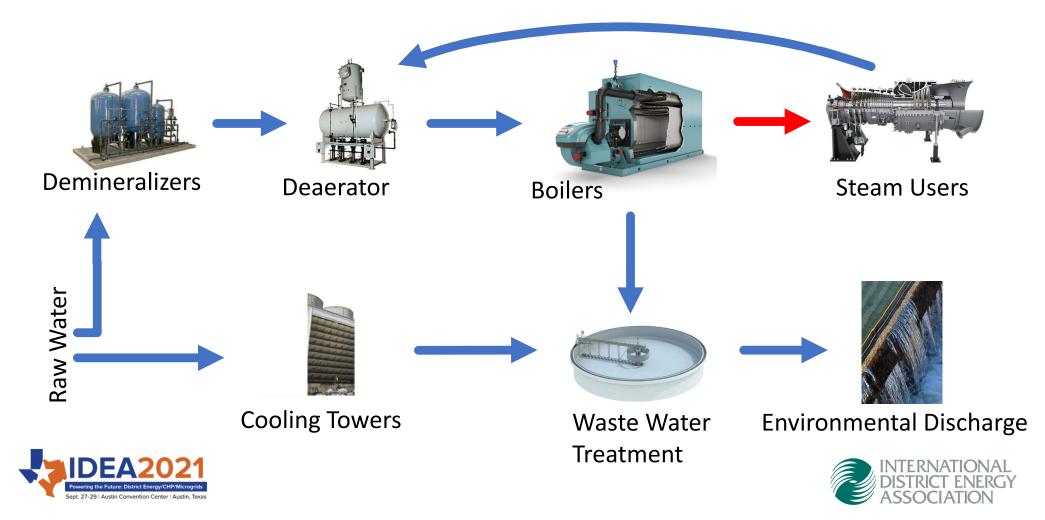
INDUSTRY GUIDELINES

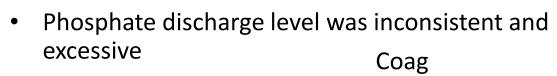
SUGGESTED WATER CHEMISTRY LIMITS INDUSTRIAL WATERTUBE, HIGH DUTY, PRIMARY FUEL FIRED, DRUM TYPE

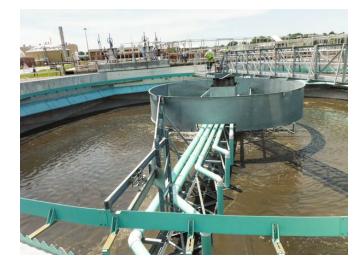
Makeup water percentage: Up to 100% of feedwater Conditions: Includes superheater, turbine drives, or process restriction on steam purity Saturated steam purity target: See tabulated values below.


TABLE 1

Drum Operating Pressure (1)(11)	psig 0-300 (MPa) (0-2.07)	301-450 (2.08-3.10)	451-600 (3.11-4.14)
Feedwater(7)			
Dissolved oxygen ppm (mg/l) O ₂ - measured before chemical oxygen scavenger addition (8)	<0.007	<0.007	<0.007
Total iron ppm (mg/l) Fe	≤0.1	≤0.05	≤0.03
Total copper ppm (mg/l) Cu	≤0.05	≤0.025	≤0.02
Total Hardness ppm	≤0.3	≤0.3	≤0.2
рН @ 25°С	8.3-10.0	8.3-10.0	8.3-10.0
Chemicals for preboiler system protection	NS	NS	NS
Nonvolatile TOC ppm (mg/l) C (6)	<1	<1	<0.5
Oily matter ppm (mg/l)	<1	<1	<0.5
Boiler Water			
silica ppm (mg/l) SiO _z	≤150	≤90	≤40
Total alkalinity ppm (mg/l)*	<700(3)	<600(3)	<500(3)
Free OH alkalinity ppm (mg/l)* (2)	NS	NS	NS
Specific conductance (12) µmhos/cm (µS/cm) 25°C without neutralization	5400-1100(5)	4600-900(5)	3800-800(5)
Total Dissoloved Solids in Steam (9)			
TDS (maximum) ppm (mg/l)	1.0-0.2	1.0-0.2	1.0-0.2


Plains Midstream Case Study Empress, AB




Overview of Plains Midstream boiler system

Waste Water Treatment

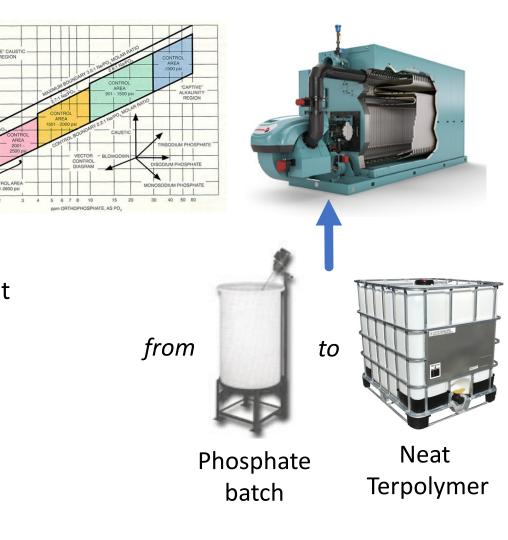
- Waste Water from Cooling Tower and Boiler blowdowns
- Limited treatment space and reaction time
- Coagulant injected to the Cooling Tower blowdown
- Boiler blowdown is untreated until injection to the clarifier

Boilers

Cooling Towers

Cooling Towers

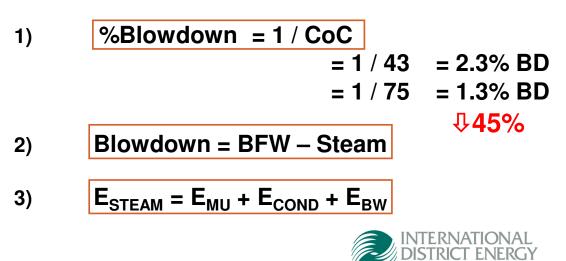
- Phosphate is a common corrosion inhibitor for open recirculating cooling systems
- Levels of 5-15 ppm PO₄ are typical depending on pH and hardness levels
- Non-phosphate Cooling Tower chemistries have been newly introduced by SUEZ and others to address phosphate discharge regulations, but was not available at that time.
- Coagulant treatment was optimized for Cooling Tower phosphate removal, so it was not the main source of phosphate "leakage".



Boiler Treatment

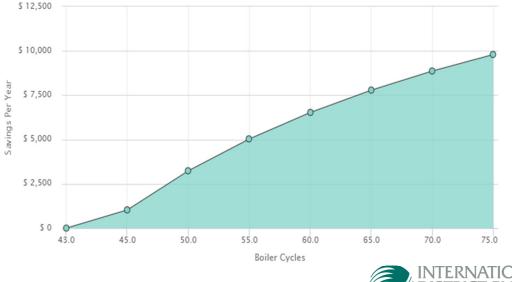
- 1 MMkg/day of steam @ 400 psig
- 15-25 ppm PO₄ in the boiler water
- Coordinated pH/PO₄ treatment was applied due to demineralized feedwater
- Below 900 psig, Coordinated pH/PO4 is not warranted due to lower localized heat flux. Phosphate then neither acts as a pH stabilizer nor a precipitation aid
- Conversion to patented all-polymer terpolymer solubilizing technology
- From daily batch making and manual blowdown to automated neat chemical treatment

Boiler Treatment


- Erratic treatment and blowdown made for an average of 43 Cycles of Concentration
- Operational Boiler Water Chemistry guidelines on demineralized water would easily allow 65-75 Cycles

t. 27-29 Austin Convention Center Austin

The impact of increased Cycles of Concentration:


Boiler Treatment

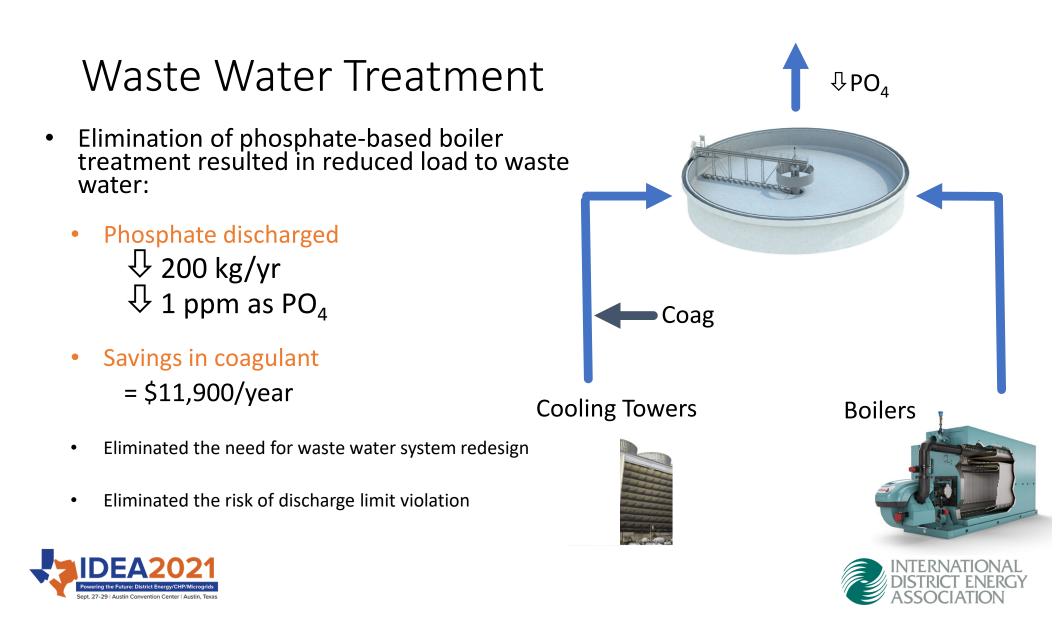
- Improvements in chemical treatment, dosage, monitoring and control, as well as application of operational best practices (blowdown control) generated:
 - Chemical savings
 - = \$18,980/year
 - Fuel savings
 = \$10,000/yr

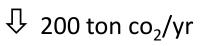
-29 Austin Convention Center Austin

- Reduction in fresh water
 \$\overline\$ 1,000,000 USG/year
- CO₂ emission reduction
 200 Ton CO₂/year
 IDEA2021
 Exercise the Future District Energy/CHE/MICROINS

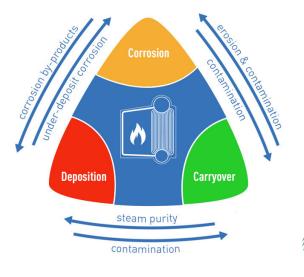
Boiler Pretreatment

- Reductions in fresh water demineralization requirement reduced regenerations frequency on the cation and anion, which translated to:
 - 52 fewer regenerations per year
 - Acid and caustic regenerant savings
 = \$11,250/yr
 - Reduction in regeneration water
 100,000 USG/year





Conclusions – Environmental and Economic Benefits


- A project to overhaul the boiler treatment to remove stress on the waste water system provided multiple environmental footprint benefits:
 - Phosphate discharged
 - $\frac{1}{\sqrt{200}}$ 200 kg/yr $\frac{1}{\sqrt{200}}$ 1 ppm as PO₄
 - Fresh water usage
 ↓ 1,1 MMUSG/yr
 - CO₂ emission reduction

While providing a safer, more efficient and more reliable operation, at a lower cost:

Thank You!

Gregoire Poirier Richer & Stephanie Enslen SUEZ Water Technologies & Solutions

