

June 6-9 | Sheraton Centre Toronto Hotel | Toronto, ON

Presented by Kurtis Judd & Vincent Brown 2022 | 06 | 02

Improving Boiler Heat Transfer Efficiency with Film-Forming Amines

Overview

Savings with Film Forming Amines

2.4% Improvement in Boiler Efficiency 2.9% Decrease in Natural Gas used (while meeting ASME guidelines) 8 x Reduction in Condensate Corrosion Rate

Problems

Paper Plant Producing Recycled Boxboard

Problems

- > Boiler water was above ASME guidelines for water quality
- > Poor steam quality due to carryover, causing energy inefficiencies
- > Complicated chemical treatment program feeding 2 amines to 2 different injection points

Program Comparison	ASME Guidelines	Operating Conditions for Previous Program	
Conductivity (µmhos)	7000	4612	
Silica (ppm SiO ₂)	150	222 ←	— Well above limit
Alkalinity (ppm CaCO ₃)	700	650	

Solution

Paper Plant Producing Recycled Boxboard

Objectives

- Operate at lower cycles to meet ASME guidelines without a major increase in energy consumption
- > Eliminate or reduce carryover
- > Maintain or improve condensate corrosion rates
- > Reduce product handling by going from 3 products to 1

Solution: Film-Forming Amines (FFA)

Changing boiler water treatment

- > A change to the chemistry of film-forming amines allows them to work as a metal treatment
- > Formation of a uniform hydrophobic film controls corrosion from dissolved oxygen and carbonic acid
- The film will form on both clean > and dirty surfaces
- The contact between water and > the metal surface is modified; the metal surface becomes water repellent

Condensate piping treated with FFA, a water droplet on the hydrophobic metal surface

Condensate piping treated with FFA, water wets the surface where the film has been scraped

Film-Forming Amines: Effect on Heat Transfer

Optimization of Energy Efficiency

- Promotes nucleate boiling on the heat transfer surface
- Increased bubble count during steam production
- Heat transfer is substantially improved and fuel energy consumption is optimized

Film-Forming Amines: Effect on Chemistry

Organic Chemistry

- > Reduction of boiler water carry-over
 - > No contribution to conductivity
 - > Improved steam quality and purity
 - Increased steam enthalpy
- > No reaction with dissolved oxygen
 - Reduced chemical product consumption
- > Replaces up to 4 chemical products
 - Less handling and pump maintenance

Results & Lessons Learned

Results

Saving Energy, and meeting ASME guidelines

- Re-established ASME guidelines for silica and alkalinity by reducing cycles in boiler from 248 to 111
 - Normally, this would mean a huge increase in gas consumption
 - Plant observed a DECREASE in natural gas used per unit of steam produced with FFA technology
- > Boiler efficiency improvement of 2.4%!

Results & Lessons Learned

Comparing Programs: Reduced Gas Consumption

- > Normalizing steam production for the years that different treatment programs were used:
 - > Energy Savings: 387,106 m³/year of natural gas (decrease of 2.9%)
 - > at 13¢/m³, that's \$50,324/year saved with FFA Treatment
 - > Significant natural gas reduction despite running at lower cycles

Program Comparison	Program Savings Switching to FFA
Boiler Cycles	248.3 down to 110.9
Boiler Heat Transfer Efficiency	2.4% improvement
Natural Gas Reduction (m ³ /year)	387,106
Greenhouse Gas Reduction (tonnes CO ₂ e)	744

Results

Decreased Condensate Corrosion Rate

- Condensate lines were treated with conventional neutralizing amines and DEHA
- Switch to treatment with Film-Forming Amines reduced corrosion rate by a factor of 8

Before Film-Forming Amines: 1.36 mpy

After Film-Forming Amines: 0.17 mpy

Conclusions

Operate at lower cycles to meet ASME guidelines without a major increase in energy consumption

 Increased boiler efficiency by 2.4%; decrease in cycles actually corresponded to a DECREASE in natural gas used

Eliminate or reduce carryover

> Foaming from sample points has been greatly reduced

Maintain or improve condensate corrosion rates

> Corrosion rates have decreased by a factor of 8

Reduce product handling by going from 3 products to 1

> Improved the treatment program with less product handling