Achieving Critical Power for Critical Loads

The Army's Base of the Future

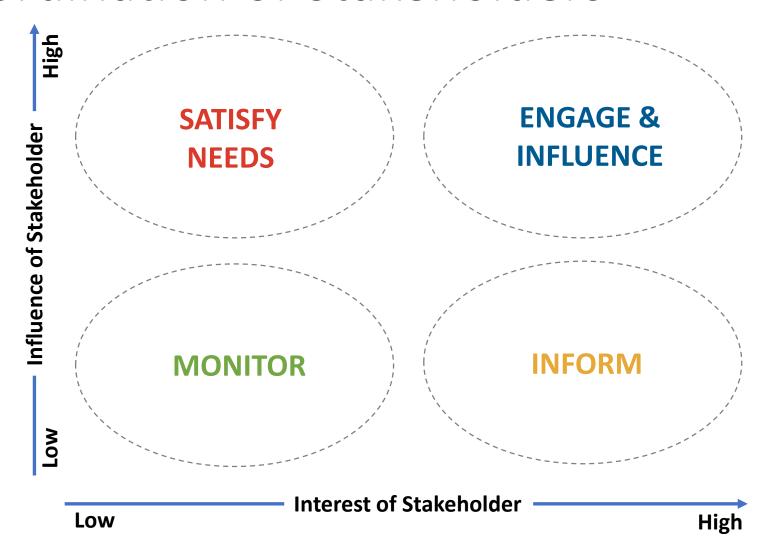
How to Achieve Resiliency Requirements for Critical Assets?

Do you need to buy an expensive battery?

What Do your Customers Want?

What does the Microgrid need to control?

How do I know what Cybersecurity requirements are required?


Will my existing infrastructure work with the Microgrid?

Where do I get started?

The 5 Critical Lessons for Critical Assets

- Coordination of Stakeholders
- Cybersecurity
- Challenges integrating with existing infrastructure
- Ensuring operational requirements are met
- Multi-level contingency handling

1: Coordination of Stakeholders



Municipal Utility-Owned Microgrid

Solar plus storage microgrid – Completed 2015

10 **Megawatts**

SATISFY NEEDS

High

Influence of Stakeholder

Low

Industrial Customers Third party financing company

ENGAGE & INFLUENCE

City Leadership Utility

MONITOR

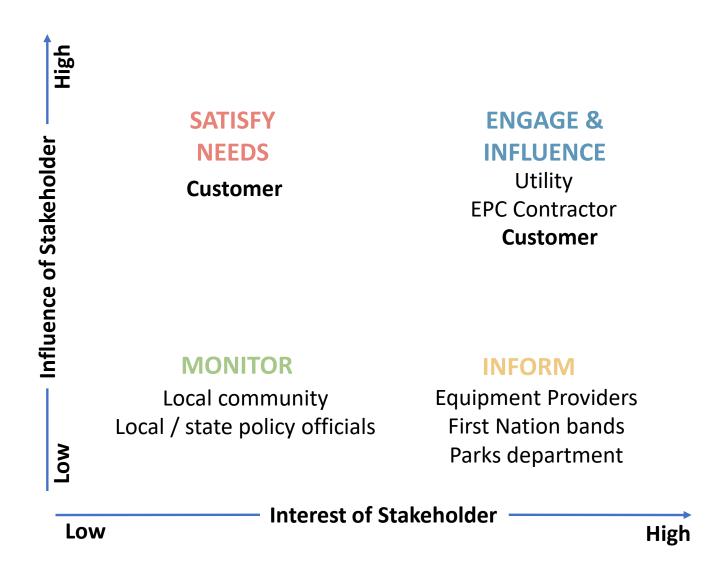
Local / state policy officials

INFORM

Equipment Providers

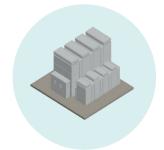
Interest of Stakeholder Low

High

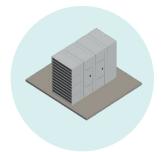

Utility Driven, Consumer Focused Microgrid

City of Field Microgrid

Utility project highlighting effectiveness of battery storage – Completed 2013


Pushing the Envelope with a Next Generation Utility Microgrid

Ameren Technical Application Center, IL


Utility prototype with 15 use cases - Completed 2017

1.5

Megawatts

Storage 250 kW

Generators 1.0 MW

Wind 100 kW

Solar 150 kW

Electric Vehicle Load Only

SATISFY NEEDS

High

Influence of Stakeholder

Low

Residential customers Local university

ENGAGE & INFLUENCE

Utility leadership

MONITOR

System operators
Regulators
Other utility providers

INFORM

Equipment providers

Low Interest of Stakeholder

High

The Complexity of a Military Microgrid

Fort Belvoir, VA

Critical base for military applications – Completed 2019

High

Influence of Stakeholder

Lo≪

SATISFY NEEDS

Government contracting
DoD Leadership
IA Validators

ENGAGE & INFLUENCE

Government project
management
Base energy manager
System operators

MONITOR

Local utility
Non-local military base officials
DoD policy officials

INFORM

Government tenant(s)

National labs

Equipment providers

Low Interest of Stakeholder

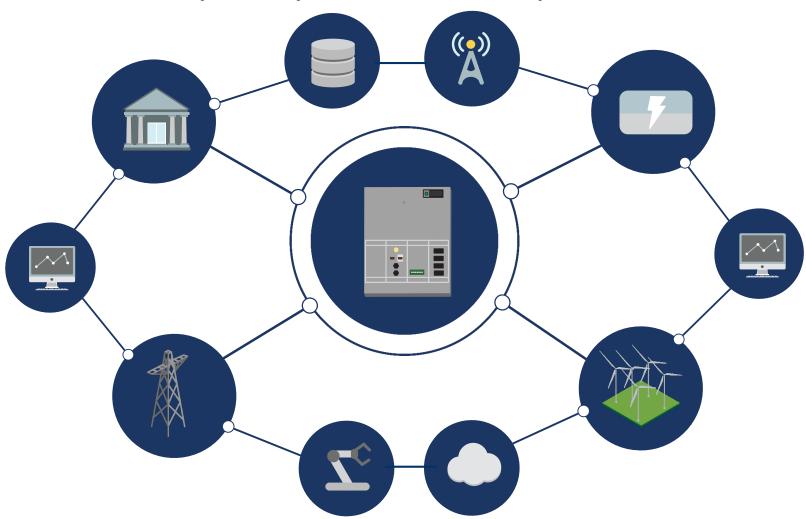
High

Practical Tips to Consider

Project Management

Make Time

Smarten Up



Who's Who

Hidden Helper

2: Cybersecurity - System of Systems

Overly Complex Security Protocols Result in Fragile Systems

COMPLEXITY ≠ **RESILIENCY**

Augmentation of cybersecurity solutions adds devices and applications that can malfunction and cause system degradation or cascading failures.

KNOW YOUR SYSTEM'S NEEDS

Understand the components and interfaces of your system and assess the risks at hand before selecting security measures.

Not all security postures are created equal

Defense in Depth Security Paradigm

3: Existing Infrastructure Integration

- Sizing of transformers
- Imbalance on the system
- Existing PV & feeder
- Adaptive relay settings

Generation Assets

- Examining generator operational state
- Upgrading generator controls
- Considering associated equipment

Physical Location

- Considering sub-grids
- Identifying open space for installation
- Installing new equipment

Network

- Varying speeds of communications
- Coordinating network design
- Integrating network hardware
- Participating in existing network

4: Ensuring Operational Requirements are Met

- Standard Use Cases
- Grid-Tied
- Island
- Transitions
 - Black start
 - Intentional Island
 - Island to Grid-Tied
- DER Optimization
- DER Monitoring and Control

- Complex Use Cases
- Storm Preparedness
- Islanding with renewables (Green Mode)
- Peak shaving
- Curtailment
- Renewable smoothing
- Frequency Regulation
- Power Factor Correction

5: Multi-Layered Contingency Handling

A microgrid must be able to withstand the loss of equipment or communications when supporting critical facilities.

What can we do?

- Coordination of All Stakeholders
- Deploying the latest Cybersecurity
- Review and develop Plan for Existing Infrastructure
- Ensure Operational Requirements are Met
- Deploying Multi-level contingency handling

Check List

- Engage Stakeholders
- Evaluate what is existing
 - Generators
 - Transformers
 - Distribution Circuit
 - Some areas maybe a better fit for a microgrid than others
- Develop of Resiliency Plan
 - If you have one, develop a feasibility study for your critical assets

Thank You!

S&C Electric Company

Chris.Evanich@SandC.com