De-Carbonizing the Campus: Planning, Tools & Technologies

CampusEnergy2023

February 27 – March 2, 2023

Gaylord Texan Resort & Convention Center | Grapevine, Texas

UC Davis Harnesses the Power of the Sun to Offset Heating Load

Joe Yonkoski, UC Davis Facilities Management Quindi Guiseppe, Syska Hennessey Group

California National Primate Research Center (CNPRC)

Replacing an Obsolete District Energy System

- Aging equipment
- Decaying infrastructure

- Insufficient redundancy
- Not aligned with campus vision

Pre-Project Energy Supplies and Uses (Annual)

System Overview

New CHCP Building:

- Electric chiller
- HHW Boilers NG, Propane, future Biogas
- Water source solar thermal heat pumps

25,000 MBtu HW Thermal Energy Storage Tank

Solar Thermal Collector field

Chilled Water System

- 585 ton centrifugal chiller and single paired counterflow cooling tower
- Variable Primary CHW pumping configuration
- Expansion capabilities to double capacity in the future.

Solar Thermal System Overview

Solar Thermal Collector System

- 300 flat plate collectors oriented due south and 40 Deg. incline
- 20% propylene glycol solution for freeze protection
- Eligible for California Solar Initiative Solar Thermal Incentive program

Water Source Heat Pump & TES

- Modular scroll style heat pumps 4 modules with 8 total load steps
- Evaporator temps vary with outdoor temperatures
- Leaving condenser setpoint typically 145 Deg. F.
- Hot Water Thermal Energy Storage on a 145-130 Deg. F. thermocline

Boilers and Heat Exchangers

- Three non-condensing watertube boilers @ 3,985 MBH output each
- Burners capable of operation on natural gas, propane and future biogas
- Boilers isolated from distribution system with P&F heat exchangers
- Packaged indirect water heaters used at outlying buildings for DHW and IHW

Heating Hot Water Distribution

- All underground piping is pre-insulated PEX in sizes up to 6" (150 mm)
- Manifold and home run distribution from central plant
- Direct buried valves

Autoclave Replacements

System features and Challenges:

- Total of nine autoclaves across three buildings needed to taken off central steam, many were old and in need of replacement
- Design originally featured clusters of 9.5 hp "California Special" boilers.
- Team found that new autoclaves with dedicated electric steam generators was close to a wash in cost

Cage Washer Conversions

System features and Challenges:

- Large steam use with very dynamic and intermittent load profile.
- Washers do not use steam directly, only needs to reach a temperature target
- Converted to utilize 195 Deg. F. water to eliminate steam usage
- Generated in two stages from HHW and polished with electric resistance tank style heaters

Post-Project Energy Use

De-Carbonizing the Campus: Planning, Tools & Technologies CampusEnergy2023 February 27 – March 2, 2023

Gaylord Texan Resort & Convention Center | Grapevine, Texas

SYSKA HENNESSY

Lessons Learned Solar Stagnation

Lessons Learned Solar Thermal Freeze Protection

SYSKA HENNESSY

De-Carbonizing the Campus: Planning, Tools & Technologies

Gaylord Texan Resort & Convention Center | Grapevine, Texas

CampusEnergy2

- Site temp rarely below freezing
- Panels radiate heat to clear, dark-sky at night
- Panels up to 10°F colder than ambient
- "Freezing" conditions occur regularly in winter

Lessons Learned Solar Thermal System

System Challenges and Lessons Learned:

- Had to turn a variable volume system into a nearly constant volume system
- Solar Radiation / conduction started and ended later than anticipated
- Ran evaporator colder than anticipated in the summer

Lessons Learned Dynamic Process Loads on a Small Campus

Thank You!

Quindi Guiseppe

qguiseppe@syska.com

jkyonkoski@ucdavis.edu

UCDAVIS | FACILITIES MANAGEMENT

Gaylord Texan Resort & Convention Center I Grapevine, Texas

