

A Microgrid configured as a Boiler + a Back Pressure Steam Turbine (Blr. + BPST)

Introduction

Microgrids – what, how and why?

Microgrid plus Combined Heat & Power (CHP) configured as a Boiler + Back Pressure Steam Turbine

Configuration, performance and economics

Project Development

Who is Energy & Water Development LLC?

Customized Energy and Water Development services for Industrial, Municipal & Commercial clients; also known as **EnWaDev**.

A. Consulting:

Energy & Water optimization strategy ("Demand Reduction", then "Supply Optimization") Investment grade financial analysis encompassing concept development, project structuring, contracting strategy, technology assessments, bid management, environmental impact, project schedule and constructability etc...

B. Development:

Design-Build and Own projects. Deliver as full-wrap Engineering Procurement & Construction (EPC) or part-wrap Engineering, Procurement & Construction Management (EPCM).

C. Operations & Maintenance:

Reliably deliver energy & water to the customer and maintain asset value for the owner

Assertions:

- 1. Efficiency *hedges* energy & water price volatility.
- 2. Profitably reduce Greenhouse Gas Emissions.
- 3. No conflict between your wallet and your conscience.

Microgrids – the market is growing

Low clearing prices emerging: in the US, solar is beginning to beat low cost fossil (2017)

More on this later

Renewables-Plus-Storage Projects are Clustered in Key Storage Regions Globally, 1.6 GW of Storage Paired with Renewables

Renewables-Plus-Storage Projects, Operational and Pipeline Storage

Global Rated Power in MW

HOW FAST WILL GLOBAL MICROGRID MARKET GROW?

Annual Microgrid Capacity and Spending by Region, Base Scenario, World Markets: 2018-2027

(Source: Navigant Research)

Canada

16 / 62016 NAVIGANT CONSULTING, INC. ALL RIGHTS RESERVED

NAVIGANT

Microgrids – what are they?

A set of interconnected loads and distributed energy resources within defined electrical boundaries; As a single controllable entity can stay grid-connected or operate in island mode.

Microgrids – what's often overlooked? Thermal energy!

Industrial and commercial customers often need <u>thermal energy</u> with electrical energy. Heat (Steam / hot water) is commonly supplied by a natural gas "package boiler"

A topping cycle natural gas Combined Heat & Power (CHP) system can supply site power & heat.

- Gas Turbines (GT), Reciprocating Engines (RE) are *power-first* CHP components and their waste heat is recycled into steam/hot water. High "power-to-heat" ratio
- Compared to package boilers, CHP has higher CapEx and OpEx; economics impacted by value of power relative to the cost of natural gas

Topping cycle GAS TUF	RBINE COMBINED HE	AT & POW	ER (CHP) SYSTEM	Topping cycle GAS TURBINE COMBINED HEAT & POWER (CHP) SYSTEM						
INPUT	UNIT	VALUE	COMMENT	OUTPUT	UNIT	VALUE	COMMENT			
Gross Capacity	MW _{e gross}	50	Available to grid / utility	Investment required	\$MM	\$80	by equity investor			
CapEx	\$/KWe	\$1,600	f (MW, KV, Kpph, psig)	Capacity payment Capacity Pmt reqd.	\$MM/yr \$/KW/month	\$8 \$12.6	by utility to equity investor \$151 \$K/MW-yr			
Par. Pwr	% of MW _{e gross}	4%	OK							
Full load availability	%	95%	OK	Operating hours Net power at user	hrs/yr MWe	8,322 48				
Debt term	years	20	Project term	Net power exported	MW Hr/yr	399,456				
Interest rate O&M Costs	%	7%	assumed							
Fixed O&M	% of CapEx	2.5%	typical - FTE, skg fund etc							
Variable O&M	\$/MWHr	\$6	typical	Cost of power						
				O&M	\$/MWHr	\$11.0	\$4 \$MM/yr			
Fuel & Performance				Fuel	\$/MWHr	\$20.0	\$8 \$MM/yr			
Gas at Burner tip	\$/MMBtu, HHV	\$4.0	Hub + distribution	Capital recovery	\$/MWHr	\$18.9	<u>\$8</u> <u>\$MM/yr</u>			
Heat Rate	Btu/KWhr, HHV	5,000	Typical	TOTAL	\$/MWHr	\$49.9	\$20 \$MM/yr			

More on this later

Why CHP? Efficiently deliver power and heat

"Topping cycle" Combined Heat & Power (CHP) at University of Massachusetts, Amherst, MA. Efficiency >80%

Traditional central power generation. **Efficiency ~35%....** burning money up the stack

Primer on CHP "topping & bottoming" cycles

	Cogeneration System Cambustian Cas Turbine (Eff-sixy = 3EPC) The street of Compus 45 Units of thermal energy Heat to Compus 45 Units	Process Waste heat Recovery Boiler Supplemental Fuel From Feed water system				
What	Topping Cycle CHP	Bottoming Cycle CHP				
Characteristic	Power first, then heat	Heat first, then power				
Power-to-heat ratio	Higher	Lower				
Relative CapEx	Higher	Lower				
Relative OpEx	Higher	Lower				
* Longer-term economic fit to a "renewables" microgrid	Lower	Higher				

^{* &}quot;Renewables" microgrid configured with (sun, wind) generation plus a Battery Energy Storage (BES)

But.... longer-term concern with "topping cycle" CHP?

Long-term power price down-trend due to fossil-free renewables (wind, sun) + battery energy storage.

Conventional fossil power (coal, nuclear) are in trouble – uncompetitive even on an operating basis.

Large (500+ MW) Combined Cycle Gas Turbine (CCGT) plants are currently competitive....but for how long?

Topping cycle ("Power first") CHP is competitive, but......

- Good: Efficient (Heat Rate ~5000 btu/kwh).
- Bad: Investment gap (\$/KW) between fossil-free renewables and fossil-fired CHP is narrowing.
- Bad: Operating cost (\$/MWh) of topping cycle CHP trending higher than pure renewables.

Bottoming cycle CHP is a <u>natural fit</u> when there is a thermal load (low pressure steam or hot water).

A Combined Heat & Power (DF-CHP) system can also be configured as a High Pressure Steam Boiler tied to a Back Pressure Steam Turbine (Blr. + BPST)

This low-cost, easily designed & installed CHP configuration improves the economics of a "conventional, renewables only" microgrid

A picture is worth a 1000 words: Boiler, PRV & BPST

Gas "package" boiler: water in, steam out

Back Pressure Steam Turbine (BPST): generates electric energy and creates economic value

Steam Pressure Reducing Valve (PRV): Increases Entropy; wastes thermodynamic & economic value.

Thermodynamics: Boiler only versus Boiler + BPT

Economics: Boiler only versus Boiler + BPT

Incremental Investme	ent \$K		\$3,000		BPST	project power output	KW		3,011	
EBITDA value created \$K/yr		\$1,168		СН	P: Fuel cost of power	¢/KWHr		1.7		
"Mother Nature" Payba	ck years		2.6			CHP Efficiency	% LHV		85%	
GHG Emissions offs	set mt CO2/yı	r	6,504			CHP: Heat Rate	Btu/KWHr,	LHV	4,181	
INPUT PARAMETER	UNIT	VALUE	COMME	ENT	OUTPUT PARAMETE	R UNIT		VALUE		
Current Host situation							BEFORE	AFTER	CHANGE	% Chge
All-in Electricity	¢/KWHr	6.0	Retail valu	ie						
Gas at burner tip, HHV	\$/MMBtu, HHV	\$4.00	Spk-sprd	4.4	Existing Boiler Fue	el MMBtu/yr, LHV	1,096,125	0		
					NEW Boiler Fue	el MMBtu/yr, LHV	0	1,134,766		
NEW Pkge Blr + BPST Syste	em (incremen	tal CapEx)		Net Change in Blr fue	l MMBtu/yr, LHV			38,640	4%
Incremental CapEx: Installed	d \$K	\$3,000	SWAG =f	(scope)					_	
					Powe	er MWHr/yr	0	25,056	25,056	#DIV/0
BPST: Isen. Eff.	%	71%	multi-stge	BPT						
BPST: All-in O&M	¢/KWHr	0.70	assumed		Process steam	MMBtu/Hr	120	120	0	0%
						Kpph	100	101	1	1.2%
New Blr: Efficiency	% LHV	85%	typical							
New Blr: Hdr. Stm	psig	600	selected		Value of Displaced Power	er \$K/yr	\$0	\$1,503	\$1,503	
	F	600	111	⁰F sup.ht	EXISTING Blr system O&N	M \$K/yr	\$416	\$0	\$416	
New Blr: All-in O&M	¢/Klb	50	assumed		NEW Blr system O&N	M \$K/yr	\$0	\$421	(\$421)	
					BPST system O&N	M \$K/yr	\$0	\$175	(\$175)	
Existing boiler					Gas Cos	st \$K/yr	\$4,385	\$4,539	(\$155)	
Efficiency	% LHV	80%	assumed		EBITD	A \$K/yr			\$1,168	
Boiler Feedwater	F	175	assumed					·	·	
Header steam	psig	150	assumed							
	F	367	1	⁰F sup.ht						
Blr: All-in O&M	¢/Klb	50	assumed		GHG emission	<u>s</u>				
					EXISTING Bir. Nat. ga	s mt CO2/yr	57,796	0	(57,796)	
Process Steam LOAD					NEW Blr. Nat. ga	s mt CO2/yr	0	59,833	59,833	
Process steam	psig	100.0	assumed		Offset grid power	er mt CO2/yr	0	(8,542)	(8,542)	
	Kpph	100.0	assumed		TOTA	L mt CO2/yr	57,796	51,291	(6,504)	-11%
Full Load Optg Hrs	Hrs/yr	8,322	assumed	'				'	'	
Grid GHG emissions	b CO2/MWHr	750	e-GRID da	ata						

Economics: Sensitivity of key parameters: cost of displaced grid power, Project incremental CapEx

Boiler+BPT	Payback "I	Hurdle"	years	3.0			Boiler+BP	Γ Payback	"Hurdle"	years	3.0		
MN Pay	back, yrs	<u>.</u>	Gas at bu	<u>rner tip, \$/</u> [MMBtu, HH	<u>V</u>	EBIT	DA, \$K/yr		Gas at bu	rner tip, \$/ <u>l</u>	ИМВtu, HH	<u>IV</u>
	2.6	\$2.0	\$3.0	\$4.0	\$5.0	\$6.0		\$1,168	\$2.0	\$3.0	\$4.0	\$5.0	\$6.0
	5.0	3.0	3.1	3.3	3.4	3.6		5.0	\$995	\$957	\$918	\$879	\$841
All-in Electı	5.5	2.7	2.8	2.9	3.0	3.1	All-in Electricity	5.5	\$1,121	\$1,082	\$1,043	\$1,005	\$966
¢/KWHr	6.0	2.4	2.5	2.6	2.7	2.7	¢/KWHr	6.0	\$1,246	\$1,207	\$1,168	\$1,130	\$1,091
	6.5	2.2	2.3	2.3	2.4	2.5		6.5	\$1,371	\$1,332	\$1,294	\$1,255	\$1,216
	7.0	2.0	2.1	2.1	2.2	2.2		7.0	\$1,496	\$1,458	\$1,419	\$1,380	\$1,342
	7.5	1.9	1.9	1.9	2.0	2.0		7.5	\$1,622	\$1,583	\$1,544	\$1,506	\$1,467
MN Pav	back, yrs	,	Gas at bu	rner tip, \$/f	MMBtu. HH	V	EBIT	DA, \$K/yr		Gas at bu	rner tip, \$/f	MMBtu. HH	IV
	2.6	\$2.0	\$3.0	\$4.0	\$5.0	\$6.0		\$1,168	\$2.0	\$3.0	\$4.0	\$5.0	\$6.0
	\$2,500	2.0	2.1	2.1	2.2	2.3		\$2,500	\$1,246	\$1,207	\$1,168	\$1,130	\$1,091
CapEx inst	\$2,750	2.2	2.3	2.4	2.4	2.5	CapEx installed	\$2,750	\$1,246	\$1,207	\$1,168	\$1,130	\$1,091
\$K	\$3,000	2.4	2.5	2.6	2.7	2.7	\$K	\$3,000	\$1,246	\$1,207	\$1,168	\$1,130	\$1,091
	\$3,250	2.6	2.7	2.8	2.9	3.0		\$3,250	\$1,246	\$1,207	\$1,168	\$1,130	\$1,091
	\$3,500	2.8	2.9	3.0	3.1	3.2		\$3,500	\$1,246	\$1,207	\$1,168	\$1,130	\$1,091
	\$3,750	3.0	3.1	3.2	3.3	3.4		\$3,750	\$1,246	\$1,207	\$1,168	\$1,130	\$1,091

Economics: Sensitivity of key parameters: site steam load and full load operating hours

Boiler+BPT	Payback "	Hurdle"	years	3.0			Boiler+BP	Γ Payback	"Hurdle"	years	3.0		
MN Pay	back, yrs		Gas at bui	rner tip, \$/I	MMBtu, HH	<u>v</u>	EBIT	DA, \$K/yr		Gas at bu	rner tip, \$/I	ИМВtu, НН	<u>IV</u>
	2.6	\$2.0	\$3.0	\$4.0	\$5.0	\$6.0		\$1,168	\$2.0	\$3.0	\$4.0	\$5.0	\$6.0
	80	3.0	3.1	3.2	3.3	3.4		80	\$1,246	\$1,207	\$1,168	\$1,130	\$1,091
Process ste	88	2.7	2.8	2.9	3.0	3.1	Process steam	88	\$1,246	\$1,207	\$1,168	\$1,130	\$1,091
Kpph	96	2.5	2.6	2.7	2.8	2.9	Kpph	96	\$1,246	\$1,207	\$1,168	\$1,130	\$1,091
	104	2.3	2.4	2.5	2.6	2.6		104	\$1,246	\$1,207	\$1,168	\$1,130	\$1,091
	112	2.2	2.2	2.3	2.4	2.5		112	\$1,246	\$1,207	\$1,168	\$1,130	\$1,091
	120	2.0	2.1	2.1	2.2	2.3		120	\$1,246	\$1,207	\$1,168	\$1,130	\$1,091
MN Pay	back, yrs		Gas at bui	rner tip, \$/l	MMBtu, HH	<u>v</u>	ЕВІТ	DA, \$K/yr		Gas at bu	rner tip, \$/I	MMBtu, HH	I <u>V</u>
•	2.6	\$2.0	\$3.0	\$4.0	\$5.0	\$6.0		\$1,168	\$2.0	\$3.0	\$4.0	\$5.0	\$6.0
	5,500	3.6	3.8	3.9	4.0	4.2		5,500	\$823	\$798	\$772	\$747	\$721
Full Load C	6,050	3.3	3.4	3.5	3.7	3.8	Full Load Optg	6,050	\$906	\$878	\$849	\$821	\$793
Hrs/yr	6,600	3.0	3.1	3.2	3.3	3.5	Hrs/yr	6,600	\$988	\$957	\$927	\$896	\$865
	7,150	2.8	2.9	3.0	3.1	3.2		7,150	\$1,070	\$1,037	\$1,004	\$971	\$938
OK	7,700	2.6	2.7	2.8	2.9	3.0		7,700	\$1,153	\$1,117	\$1,081	\$1,045	\$1,010
	8,250	2.429	2.507	2.590	2.678	2.773		8,250	\$1,235	\$1,197	\$1,158	\$1,120	\$1,082

Boiler + BPST integrates into a "renewables"" microgrid

Benefit to the investor / owner

BPST payback < 3-yrs (IRR > 30%)

Extremely low "fuel cost of power" makes a bottoming cycle CHP configured as a boiler + BPT another source of power for a thermal customer considering a "renewables" microgrid.

Reliable onsite power supply. BPST maintain their efficiency across the load curve from 100% to 20% of nameplate; hence over/under sizing is *less* of a concern

Benefit to Grid

Local grid stability including power factor support and reduced I2R line loss Balance variable power from wind and solar, thus speed renewable energy deployment

Benefit to society

Reduced pollution and profitable lowering of greenhouse gas emissions

Project Development: common sense + due diligence

1. Set objectives & gather data; conceptualize configurations; technical & economic appraisal

2. Project development

Technical: Configuration, engineering, procurement, construction

Legal: Structure of contracting entities (LLC, S or C Corp etc...)

Commercial: Contracts for fuel, power, O&M, grants & incentives

Environmental: Permits

Financial: Financial models, equity & debt

Risks & Mitigants: Project Execution Plan (PEP)

4. Project Delivery; Long-term Operations & Maintenance

TAILWINDS	HEADWINDS
Tried & true technology CHP recognized as a proven technology	Inertia and unfamiliarity Compared to CHP, boilers are "tried and true"
10% Investment Tax Credit (ITC) Reduce CapEx; increase Return on Investment (ROI)	Upfront investment Slightly greater CapEx compared to boiler only.
Accelerated depreciation Increases Return on Equity (ROE)	Air permit MACT pollution control regulations allow retaining current air permit. CHP reduces pollution, yet requires a new permit
Value of redundancy, resiliency & reliability	Standby & exit charges Imposed by some utilities before allowing CHP systems to interconnect with the grid.

Questions?

Suresh Jambunathan,
Owner & CEO
Energy and Water Development LLC
www.energywaterdev.com

Cell: 630-335-4544

E-mail: enwadev@gmail.com; Suresh.Jambunathan@gmail.com;

October 30th 2018 Baltimore, MD