Small Scale CHP Using the Organic Rankine Cycle Case Studies from Europe

a group company of Å MITSUBISHI HEAVY INDUSTRIES, LTD.

Ilaria Peretti Manager, Sales and Business Development for North America

Denver - February 11th, 2015

Biomass – Fuels & Applications

Why Distributed Biomass-Fueled CHP?

- sustainable & renewable: CO₂ neutral and re-growing fuel
- Iocal energy source: no dependence on volatile global fossil fuel markets
- local base-load electric power: relief for congested transmission lines
- impact on economy: uses a local supply chain and keeps energy revenues local
- clean technology: small plants easier permit

Biomass Energy: Centralized Electric Power

- ➤ optimized electric efficiency
- Iow total energy efficiency (< 40%; no use of heat)</p>
- higher biomass transport cost & transmission losses

4

a group company of A MITSUBISHI HEAVY INDUSTRIES, LTD.

Graph source: Neil Harrison: "Wood burns: an urban myth?" Presentation held at "International Biomass Conference", Portland, OR, 2009

Biomass Energy: Distributed CHP

- very high total energy efficiency (CHP)
- higher specific investment cost
- Iow biomass transport cost & transmission losses

a group company of 🙏 MITSUBISHI HEAVY INDUSTRIES, LTD.

Graph source: Neil Harrison: "Wood burns: an urban myth?" Presentation held at "International Biomass Conference", Portland, OR, 2009

Copyright © - Turboden S.r.l. All rights reserved

Modular ORC Units Layout

ORC Plants – Perfomances

CHP – District Heating Networks

For district heating networks:

- DH-Water temperature: 176 F to 203 F
- Need of increase incentives for CHP plants
- Need of optimization of existing power plant

- Hot water for district heating network
- Production of green energy
- Automatic operation
- Low operational costs:
 - ✓ no shift work needed
 - ✓ adapting to heat demand

INPUT - Thermal Oil Thermal Power Input:17.54 MMBtu/hr Inlet/outlet Thermal oil Temperature:572/464 F

OUTPUT - Hot Water Thermal Power to Hot Water circuit:13.92 MMBtu/hr Inlet/Outlet Hot Water Termperature: 140/176 F

PERFORMANCES Electric Power: 1 MWe Yearly operation hours: 8,000

Heat demand analysis

Diagram yearly cumulated thermal power

Base load of DH = ORC's OUT-thermal power

	25 (uwww] pursuap aa	.000 000.	7	~					
	od 10	000 -			~				
1.1.1	2		100000100	TAMAGOUN C DAY		CARGING HERE	tant ater	formation prover	10000
111 Sec.	10				***			7 1	
-	relate VC has been	4 1	8104	3228	1010	100.041	100	10000	1000
test two	coner typi	10.1	245	305	114	676	100	1007	1,110
town bio	one of layout	1 1	200	2348	2204	1244	1044	£7544	(Jan
Lefters	owner /	Mar	.14	18.8	12.56	22	39.6	de la	1 100
	-			disc.	18.02	111	- 22		
	((bird state	3.	10	1000	1010	118	100	111	100
-	tentworkst.	10	294	111	1.480	671	100	100	140
frate an	and a ball	* *	4010	4/18	1000	1859	land.	/ 10W	
And had		and an	-	101	310	40	1	2.5	- 61
Instea	TA DOM: N	10.7	10	10			100	224	24
Transmission of		1000	1235	105	535	128.		125	1.5
Sec.	disade.		-	100	4	18		F	11
Manute	NU DOOR COLOR	18	pt.	12	- 10	- 18	$V \square$	230	
iliais	-		1636	305	10A	9.9		10	14.89
lett pres	1/11/		10.00	10,43	SPL EV HIE RV			D1.00V 01LENV	300, 6 000, 60
fai se			burbs -	- Ingeller	NUMBER OF	ALC: UNK	ANN	MARK .	MAN!
Series cela	-8C	191	1605	182	387	,228	100	878	\$18
	Delle.	Barra :	941	- 44	PHI .	811	- 111	W.	- 111
Section.									

- ORC all time at nominal load
- Highest efficiency, about 20%
- Electrical production full power

- ORC reliable technology for power production: highly reliable
- Cogenerative solution (also trigeneration CCHP) since more than 30 years
- Distributed power generation
- Green energy production: reduced emissions and increased efficiency
 - \rightarrow incentives & funds
- Optimization of existing power plants and ORC automatic operation:
 - adapting to thermal demand
 - low operational costs

Reference: Bioenergie Fernheizwerk Ritten

ORC characteristics:

Model: Turboden 8 CHP Client: Bioenergie Fernheizwerk Ritten coop Start-up: December 2008 Localisation: Renon (BZ) – Italy Fuel: Wood chips Electric power generated: 990 kW Thermal power generated: 990 kW Thermal power generated: 15 MMBtu/hr Water temperature: 140 – 194 °F

Context / Special Feature

Total heat capacity production:

- 1 thermal oil biomass boiler: 17 MMBtu/hr

total thermal power for about 400 customers)

- 1 gasoil boiler for consumption pics: 13.65 MBtu/hr
Separated district heating water circuit
district heating: about 10 miles (main root)
Nr. of customers on the grid: about 250
Biomass storage for 7,000 cubic meter (srm)
Planned upgrade: a second biomass boiler (55 MMBtu/hr

CCHP – Combined Cooling Heating Power

Context / Special Feature

A/ Television studios, Sky headquarter in Europe - As Europe's first Carbon neutral media company - Space Area: 8,600 square feet, 113,000 cubic feet - Thermal power: 5% heat the building, 50% to chiller and 45% as heating to a district heating loop around the campus - Reason for Tri-generation: biomass-fuelled combined cooling and heating (CCHP) power plant, reducing the building's carbon footprint by at least 20 percent - Planning driven, achieving 20% reduction in carbon and 20% usage of Renewable Energy

B/ Specificity CCHP

- Fuel: biomass
- Type of biomass: waste clean wood
- Boiler supplier: VAS
- Thermal oil boiler capacity: 17.5 MMBtu/hr
- Cogeneration through ORC
- Cooling power produced by chiller
- Chiller supplier: Carrier (PWPS) / Sanyo

C/ Energy management due to: - Natural air ventilation and wind turbine

ORC characteristics: Model: Turboden 10 CHP Split Client: Clearpower Limited Start-up: 4th quarter 2011 Localisation: Osterley, West London, UK Electric power generated: 968 kW Thermal power application: space heating/cooling Thermal power generated: 14 MMBtu/hr Water temperature: 155-194 °F

Copyright © - Turboden S.r.I. All rights reserved

Greenhouses

Example of greenhouses application

Context / Special Feature

Model: Turboden 18 CHP Client: AGO AG - TOMSTAR Start-up: December 2006 Localisation: Alperstedt, Germany Fuel: Virgin wood chips Electric power generated: 1,784 kW Thermal power application: grenhouse heating Thermal power generated: 26.73 MMBtu/hr Water temperature: 140 – 194 °F Boiler supplier: Mawera

Context / Special Feature

Business: Vine tomatoes greenhouse Greenhouse size: 1 MM square feet Yearly production: 4,800 ton Nominal thermal power: 27 MMBtu/hr CO₂ saving: 14,000 ton/year Website: www.tomstar.gbt-alperstedt.de

Copyright © - Turboden S.r.I. All rights reserved

Analysis of a cogenerative biomass plant Turboden 22 CHP

Turboden 22 CHP Fixed feed in tariff (15 c\$/kWh) Variable cost of biomass

INPUT PARAMETERS		
Electric energy cost	10	c\$/kWh
Thermal energy cost	3	c\$/kWh
Plant own consumption (ORC excluded)	250	kW
Interest rate	5	%
ORC maintenance costs	25,000	\$/year

COGENERATION WITH TURBODEN 22 CHP					
Nominal power at the furnace*	50	MMBtu/hr			
Boiler thermal power	41.01	MMBtu/hr			
Net electric power from ORC	2,207	kW			
Thermal power to the grid (at 194 F)	32.76	MMBtu/hr			
Portion of thermal energy sold**	50%				
Plant own consumption (estimation)	250	kW			
Yearly biomass consumption***	36,000	tons			
Net electrical power sold to the grid	1,957	kW			
ORC cost	2,628,000	\$			
Total investment (estimation)	13,000,000	\$			

* Assuming 82% boiler efficiency

** Assuming **8,000** working hours a year, the overall thermal power produced results in **262,000 MMBtu per year**; it is assumed that **50%** (equivalent to **4,000** hours a year – i.e. **131,000 MMBtu per year**) is **sold** and **50% dissipated** *** Assuming **17 MMbtu/ton** biomass HHV

Example: with feed in tariff (15 c\$/kWh)

Thank you for the attention!

a group company of 🚣 MITSUBISHI HEAVY INDUSTRIES, LTD.

Ilaria Peretti Manager, Sales and Business Development for North America ilaria.peretti@turboden.it

