

Newer Approaches to Solve Resiliency, Efficiency and Sustainability Challenges Chris Dunlap, Power Generation BDM, Americas

Confidential Property of Schneider Electric

Chris Dunlap Power Generation Business Development Manager, Americas

- 30 years Power Generation Experience
- 2018 Power-Gen International Microgrid Chairman
- ISA Boston (Past-President; Executive Board)
- Senior level sales management and engineering positions at multiple Fortune 500 companies:
 - Emerson
 - Siemens
 - Rockwell Automation
- Based at Schneider Electric's North American headquarters in Boston, MA USA

Life Is Or

Energy Megatrends – Creating New Energy Landscape

More ELECTRIC

2X faster growth of electricity demand compared to energy demand by 2040

Source : IEA WEO 2014

DIGITIZATION

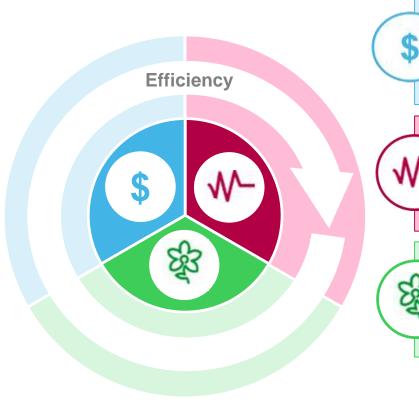
10X more incremental connected devices than connected people by 2020

Source : Cisco, Internet World Statistics

DECARBONIZATION 82% of the economic potential of energy efficiency in buildings and more than half in industry, remains untapped

Source : World Energy Outlook 2012, Internal Analysis

DECENTRALIZATION 70% of new capacity additions will be in Renewables by 2040


Source : BNEF

Microgrid Megatrends: Smart Districts, Smart Cities & Campuses

- Thermal vs Electric priority
- District Energy:
 - Traditional context: Thermal Distribution
 - New Context: Thermal plus Electrical Resilience
- Resilient Cities
 - Rockefeller Foundation: 100 Resilient Cities
 - Member Cities Include: Vancouver, BC; Calgary, AB; Toronto, ON; Seattle, WA; Washington, DC; Boston, MA
 - Protect against hurricanes, disasters (e.g. Hurricane Maria, Sandy, etc...)
 - Resilience for cities is great marketing tool for business, events, commercial properties
- Sustainable Companies
 - RE100 group of companies Committed to 100% Renewable Power
 - Member Companies: Schneider Electric, ABInBev, AstraZeneca, Coca-Cola, Facebook, GM, HP, J&J, Nike, P&G

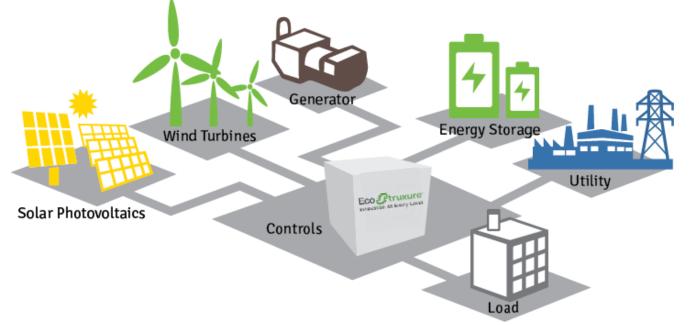
What New Energy "Prosumers" are looking for

Cost

- Lower / More Predictable Energy Costs
- Energy / Fuel Source Arbitrage
- Flexibility drives savings / incremental revenue

Resilience

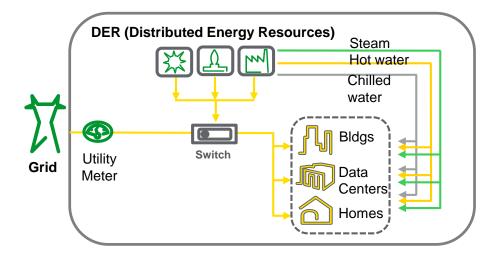
- Serve loads during times of grid instability
- Oasis for employees / customers shelter in place
- Protect power sensitive / critical assets from poor power quality


Sustainability

- Reduce carbon footprint
- Improve brand image
- Attract / Service carbon sensitive customers

What is a Microgrid?

An integrated energy system consisting of interconnected loads and distributed energy resources...



...which as an integrated system can be controlled as a single entity and operate in parallel with the grid or in an intentional *islanded* mode.

Combined Heat and Power & Microgrids

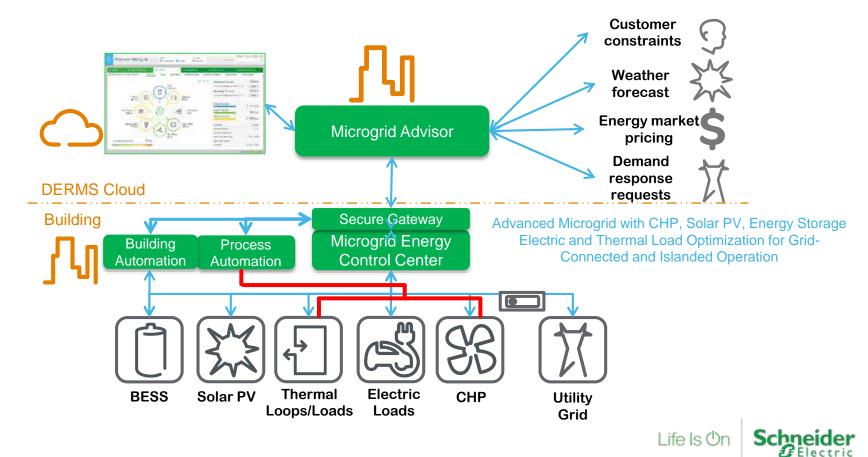
CHP provides superior reliability, meeting a site's thermal needs in addition to its electrical needs, round-the-clock, even in the event of a grid outage.

- Steam, hot water and chilled water is produced at District Energy Centers
- Environmentally Sound
- Individual buildings do not need their own chillers/ boilers
- > Easy to operate and maintain
- Comfortable and Convenient
- Provides Architectural Flexibility
- Take advantage of incentives (gov't: Fed, State, local utility)

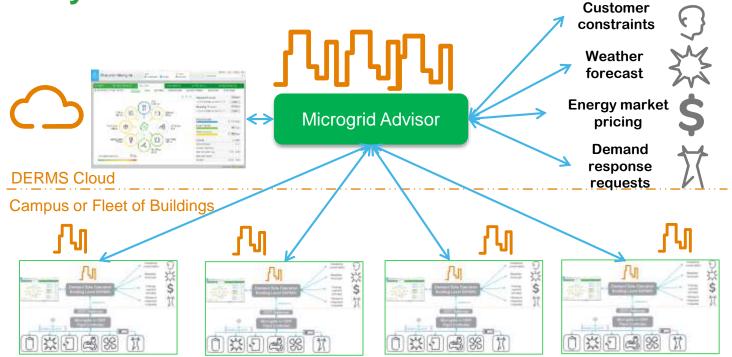
Prosumers have varying degrees of supply and demand flexibility

The more flexibility the better the optimization

Lights and Motors Grid and Solar

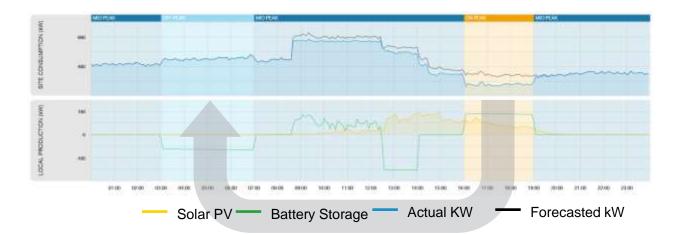


Lights and EV Charging Grid, Solar and Storage


Lights and EV Charging, HVAC and Cold Chain Grid, CHP, Solar and Storage

Microgrid Architecture – Building or Facility

Microgrid Architecture – City, Complex, Campus or Facility Fleet

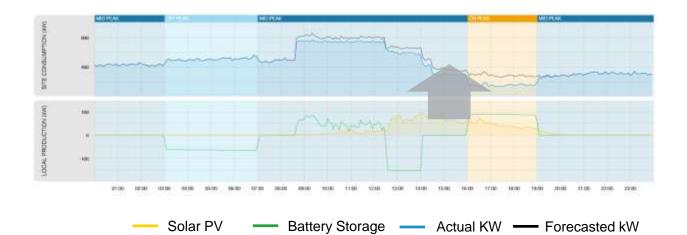

EcoStruxure Microgrid Advisor

Monitor, Predict and Control Electrical and Thermal Energy

	Annupild ON Partial autophol Partial autophol	Dente 04 OK 2 oboit events Ne error	A Marci	Laurent -	Schreider
MY STEE ECHNEIDER ELECTRIC HEALTINE CONSUMPTION ACTIVITIES Independence 0 Last sepander 3 Days - 51 h - 51 mm apr ENVERTION INVERTIGN INVERTIGN ACTIVITIES INVERSION COLD CHAIN	GTHER LOADS				
		Ross Sheeronaana	HIGHLIGHT	rs	*
		Grid Consumption			- MW - % 18 kW
24 WW ()		Weather	1h	+2h	.+3b
167 KW (1)	A STATE OF S		**	ŝ	0
	(C))	Cloud Coverage (%)	0	13	36
50 MW (12)		Precipitation Amount (mm) Probability Of Precipitation	0	0	0 0
Oww (C)	and and a second se	Pressure (mBar) Wind Speed (km/h)	1014.0 15	1014.0 50	1014.0 58
		Wind Direction (deg) Probability Cf Storm (%)	7	K	4
238 kw Lrl 50 ↔ 53 453 kw		Probable y Gr Storm (%)			- 50
0 iw	CO2 Emission per MWh 90 k	9			
Active Mode Autopilote	Coffg	rid Prepardness			
M Meriding OC DemonStrange OP Of Ord Preparations 14. Sam Management OR Demonstrangement OS OF Ord Set		See Start See Over She Tree 3/25/09/7 3/25/09/7 10:24 AM		C	Feat

Peak Electric, Thermal or Gas Pricing – Tariff Optimization

Shift consumption from times of high cost to times of low cost


Life Is (

Mixed Use Case at the Prosumer Microgrid

- Prosumer optimization of battery charge, discharge and peak shaving
- However a utility demand response (DR) event may "interrupt" prosumer operation and execute based on what utility wants.
- Algorithm abandons Peak Shaving, and must recharge to prepare for DR event. We have left the Prosumer benefit and shifted to the Utility benefit.

Demand Limit Management – Peak Shaving

Minimize / avoid fees by shaving peak demand

- *Example 1:* Dispatch energy storage to supply some load to avoid a peak
- *Example 2:* Shed loads (HVAC, EV Chargers, etc.) to avoid setting a peak
- Example 3: Sequence the start of large loads to avoid coincident peak demand

Smart Districts

IMT Campus Microgrid (Institute of Jobs and Techniques)

Type: Smart District Location: Grenoble, France Size: 7 buildings Completed: Under execution

Customer pain point

Better integrating local energy generation, managing all energy flow (thermal and electrical), training students about energy

Solution

EcoStruxure Microgrid Advisor leveraging DEMIS features for forecasting and optimizing when to produce consume store energy, regarding all energy flows in the whole campus

Scope

- EcoStruxure Microgrid Advisor with DEMIS
- DER: PV, BMS (HVAC), EV, Energy storage, CHP
- Delivering a learning platform dedicated to students

Life Is 🛈

Grid connected / Islandable sites

Logistic center - Finland

Type: Industrial facility, grid connected Location: Europe Size: 2 MW Completed: Under execution

Customer pain point

Having a single control solution for optimizing electrical usage, thermal usage and performing advanced frequency regulation use case

Solution

EcoStruxure Microgrid Advisor for monitoring, forecasting and optimizing when to produce, consume, store both electrical and thermal energy. Participation as well into frequency regulation mechanisms

Scope

- EcoStruxure Microgrid Advisor
- DER: PV, BMS (HVAC), EV, Energy storage, genset, connection to electrical grid and thermal grid

Grid connected / Islandable sites

Large Corporate Facility

Type: Industrial facility, grid connected Location: Foxboro, MA USA Size: 1.1 MW Completed: Under execution

Customer pain point

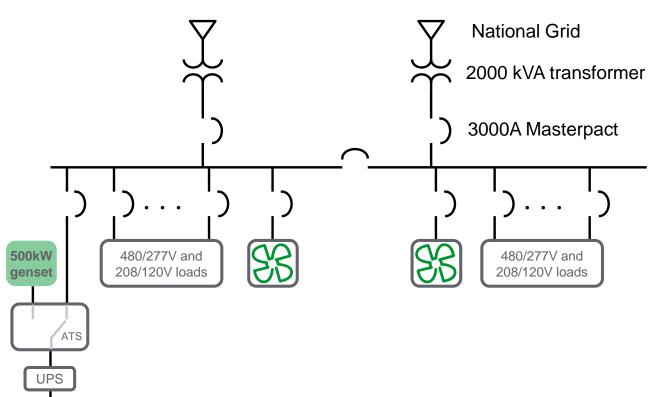
Having a single control solution for optimizing electrical usage, thermal usage and "islanding" during local Utility outage.

Solution

EcoStruxure Microgrid Advisor for monitoring, forecasting and optimizing when to produce or consume electrical energy. Termis and EcoStruxure Profit Advisor to optimize thermal production and distribution.

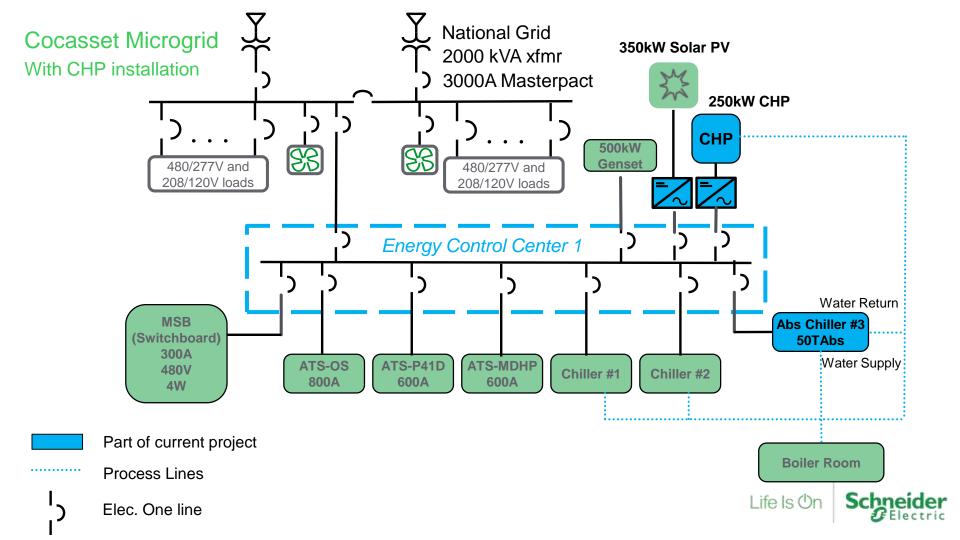
Scope

- EcoStruxure Microgrid Advisor, Energy Control Center
- EcoStruxure Hybrid DCS, Termis,
- DER: PV, BMS (HVAC), genset, new absorption chiller CHP connection to electrical grid and thermal grid

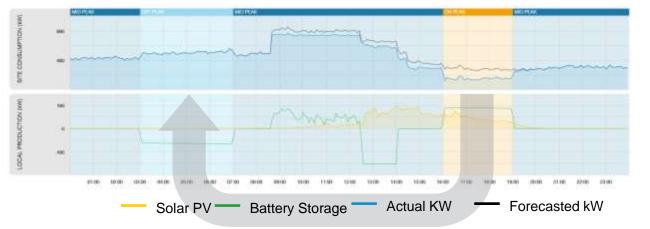

North American Power Generation Headquarters

Cocasset – Initial State

Data Center / critical IT loads


(≤100 kW)

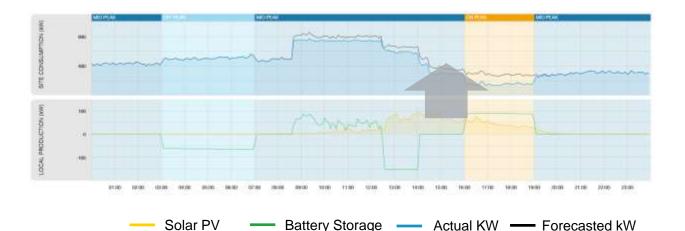
Key factors


- Several outages since moving into building
- Total load ranges from ~350kW to ~1.5MW
- Existing 500 kW genset feeds critical load through an Automatic Transfer Switch (ATS)
- Stranded genset capacity: > 400kW

Peak Electric or Gas Pricing – Tariff Optimization

Shift consumption from times of high cost to times of low cost

Source: Oncor – May 27, 2015

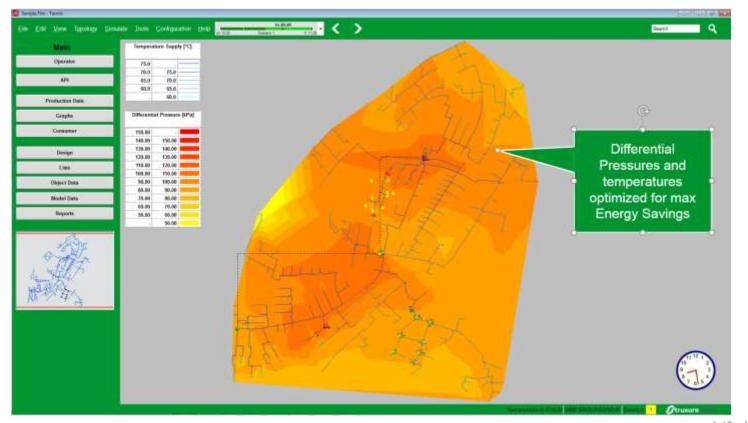

Life Is (

Mixed Use Case at the Prosumer Microgrid

- Prosumer optimization of battery charge, discharge and peak shaving
- However a utility demand response (DR) event may "interrupt" prosumer operation and execute based on what utility wants.
- Algorithm abandons Peak Shaving, and must recharge to prepare for DR event. We have left the Prosumer benefit and shifted to the Utility benefit.

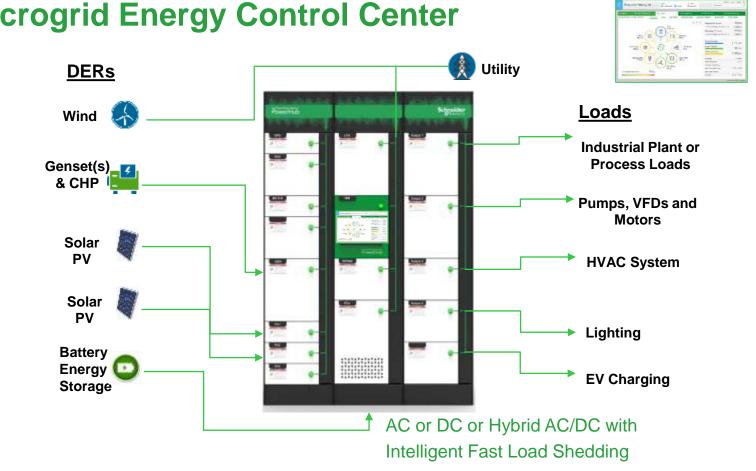
Demand Limit Management – Peak Shaving

Minimize / avoid fees by shaving peak demand



Source: Oncor – May 27, 2015

- *Example 1:* Dispatch energy storage to supply some load to avoid a peak
- *Example 2:* Shed loads (HVAC, EV Chargers, etc.) to avoid setting a peak
- Example 3: Sequence the start of large loads to avoid coincident peak demand



Termis Software: CHP/District Heating and Cooling Optimization

Life Is On

Microgrid Energy Control Center

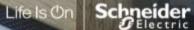
Life Is Or

EcoStruxure Battery Energy Storage System - NEW

Configuration	125kW/250kWh	250kW/500kWh	500kW/1MWh	1MW/2MWh
Power Cabinets	1	1	1	2
Battery Cabinets	2	3	6	11
Power Cabinet Est. Weight - kg	400	500	700	1400
Battery Cabinet Est. Weight - kg	2990	5850	11700	21450
BESS Est. Weight - kg	3390	6350	12400	22850
Est. SQ. FT	37.5 (3 x 2.5'x 5')	50 (4 x 2.5' x 5')	87.5 (7 x 2.5' x 5')	162.5 (13 x 2.5' x 5')

Note: If bumpless "UPS quality" BESS is needed, we have Galaxy VM series Used on 60%+ of datacenters globally.

Closing Thoughts


- A New Energy Landscape is here be ready !
- > Energy Optimization requires integrated electrical and thermal (CHP) systems
- > Dynamic Microgrid operation needed to achieve optimal:
 - Resiliency
 - Efficiency
 - Sustainability

Questions? Thank you ! Life Is Un

FGHIJK LMNOP QRSTU

> Chris Dunlap Cell: +1 (978)269-7120 Christian.Dunlap@schneider-electric.com

