Integrating and optimizing renewables in microgrids

Lessons learned from Australia

Prepared for Microgrid 2.0
By Tristan Jackson, Director, Smart & Distributed Energy
29 Oct. 2018
Agenda for today

- Brief background
- Case studies
 - Esperance
 - Coral Bay
 - Exmouth
 - DeGrussa Mine
- Modelling approaches
- Lessons learned

Photo: Courtesy TransGrid
Smart & Distributed Energy systems experience

Across both urban and remote settings:

- Hybrid systems featuring >95% energy from renewable generation
- Mines
- Islands
- Critical infrastructure
- Remote communities
- Airports & Marine ports
- Real estate
Australian Antarctic Base at Mawson – two, Enercon E33 low temperature purpose designed turbines installed in 2003 - U_{max} around 250km/h, Temp $<$ -30
8th November 2017, turbine failure

When you push the boundaries – in this case wind at their engineering limits – sometimes things break and there are obviously serious issues around such. Should this stop us trying though?
Australia – a few example projects

Assessment of project for funding support – use of existing spinning reserve battery for solar balancing

Due diligence & lenders engineer for solar + battery + diesel micro-grid

Delivery project management support for 5MW/3.4MWh battery for solar smoothing

Project management, control logic analysis, grid studies, procurement and development assistance for 55MW_{AC} solar + 20MW/80MWh battery project

Concept design and delivery owners engineer for grid connected C&I solar + battery + hydrogen electrolysis + gas/H2 engine micro-grid

Concept design and financial assessment for behind the meter batteries, coal mining operations
Small, islanded microgrids

Connection to remote mine loads and/or grid

Mine processing

Renewables

Main power station

Energy storage unit

Electrical connection & control

Renewables
Exmouth power station

- Dual gas/diesel system of 8MW capacity commissioned in 2006
- “Mini wind farm” to use small tilt down wind turbines in a severe cyclone environment
- Photo: one of the 10kW machines (there are 3)
Coral Bay

- 7x 320kW low load diesels
- 3x 225kW wind turbines
- 1 x 500 kW flywheel energy storage
- Commissioned in 2007
Coral Bay

The low load diesels are specifically designed to operate down to 10% loading for extended periods.

The flywheel is for spinning reserve and to control ramp rates from the induction generator based wind turbines.

Average wind penetration is around 45% but it can run for extended periods for higher than 95%.
DeGrussa Mine

• Large operational energy demands, using a 19MW diesel-fired power station to provide electricity to the gold and copper mine

• They wanted to supplement the power station with 10.6MW of photovoltaics (PV) and a 4MW lithium-ion battery system in order to reduce their overall energy generation costs
System Modelling Approach

Packages used by WorleyParsons in Australia

- PSS/E, PTI Technologies Inc.
- PSS/ADEPT, PTI Technologies Inc.
- ETAP PowerStation, Operation Technology Inc.
- ERACS, ERA Technology Ltd
- Matlab
- Mathematica, WOLFRAM
- CDEGS “Current Distribution Interference Grounding and Soil”
- EMTP “Electromagnetic Transient Program”

- Bespoke software written if required for specific project issues
Specific DER & Microgrid Modelling:

BANKABLE DER & MICROGRID PROJECTS

- Integrated End-to-End Investment and Technical Planning Platform
- Economic and Financial Optimization + Power Flow Analysis
- XENDEE Score: Getting DER Projects Down to a Single ‘FICO’ Number
Why Economic Optimization and not just Simulation?

With permission of Berkeley Lab
XENDEE Process

For your energy project
- Microgrid
- Battery Energy Storage
- Electric Vehicles
- Alternative Energy System

Your priorities
- Cost Savings
- Emissions Reduction
- Resilience & Reliability
- Safety & Security

XENDEE PLATFORM

Your data
- Location
- Facility type and use
- Energy use mix/cost
- Load profile

Platform data
- Energy pricing
- Solar and wind data
- Vendor data
- Geospatial analysis

Technical & Financial Optimization

Fast, reliable results
- Financial pro forma
- Customized system design
- Technical report
- Optimized operations

For your energy project

Your priorities

XENDEE PLATFORM

Your data

Platform data

Technical & Financial Optimization

Fast, reliable results

E: tristan.jackson@advisian.com

For your energy project
XENDEE PLATFORM
Fast, reliable results
www.worleyparsons.com | www.advisian.com
Your data ...
Platform data...
Technical & Financial Optimization
Fast, reliable results
Financial pro forma | Customized system design | Technical report | Optimized operations
Step 1: Set your priorities

- Cost savings
- Emissions reduction
- Resilience & reliability
- Safety & security

XENDEE platform
Step 2: Input site-specific data

- Location
- Facility type & use
- Energy use mix/cost
- Load profile

XENDEE platform
Step 3: Apply platform data

- Location
- Facility & use
- Energy use mix/cost
- Load profile
- Energy pricing
- Solar & wind data
- Vendor data
- Geospatial analysis

XENDEE platform
Step 4: Run technical & financial optimization

- Location
- Facility & use
- Energy use mix/cost
- Load profile

XENDEE platform

- Energy pricing
- Solar & wind data
- Vendor data
- Geospatial analysis
Step 5: Fast, reliable results

- XENDEE platform
- Least cost, best fit solutions
- Validated, auditable results

- Financial pro forma
- Customized system design
- Technical report
- Optimized operations
8760 Power flow

Integrated deep-circuit power flow analysis:
- Automatic one-line generation
- Quasi-static time-series simulation
- Distribution system planning
- Google maps integrated for GIS views

Automatic Report Generation

Power Flow Reporting on One-Line Diagram
Sequence of operations

Most Optimal Sequence of Operation Logic Output
(September outage day)

Load Shape (September day)
Summary report

Summary: Annualized Energy Costs ($000s)

Annualized Energy Costs

<table>
<thead>
<tr>
<th>Reference</th>
<th>Optimized</th>
<th>Annualized Investment Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1,517</td>
<td>$308</td>
<td>$233</td>
</tr>
</tbody>
</table>

Summary: Yearly Investments and Operational Costs

Yearly Investments and Operational Costs
Lessons learned

- Optimize for the use case (*not* redundancy everywhere)
- Renewables + Storage are competitive now
- Hybrid systems offer the greatest flexibility and cost competitiveness
- Specialized software for system optimization can save up to 90% of soft costs
- Consider the full range of technology options (remain technology agnostic)
DISCLAIMER

This presentation has been prepared by a representative of WorleyParsons.

The presentation contains the professional and personal opinions of the presenter, which are given in good faith. As such, opinions presented herein may not always necessarily reflect the position of WorleyParsons as a whole, its officers or executive.

Any forward-looking statements included in this presentation will involve subjective judgment and analysis and are subject to uncertainties, risks and contingencies—many of which are outside the control of, and may be unknown to, WorleyParsons.

WorleyParsons and all associated entities and representatives make no representation or warranty as to the accuracy, reliability or completeness of information in this document and do not take responsibility for updating any information or correcting any error or omission that may become apparent after this document has been issued.

To the extent permitted by law, WorleyParsons and its officers, employees, related bodies and agents disclaim all liability—direct, indirect or consequential (and whether or not arising out of the negligence, default or lack of care of WorleyParsons and/or any of its agents)—for any loss or damage suffered by a recipient or other persons arising out of, or in connection with, any use or reliance on this presentation or information.