STANLEYCONSULTANTS

SU20 AIR BASE WING

Microgrid Studies Identify Key Design Elements: Joint Base San Antonio Microgrid

Brief by: Ernie Leaf, PE 26 February 2019

Learning Objectives

- **1. Understand Microgrid benefits**
- 2. Microgrid planning considerations
- 3. Understand the basics of power system modeling for Microgrids

Agenda

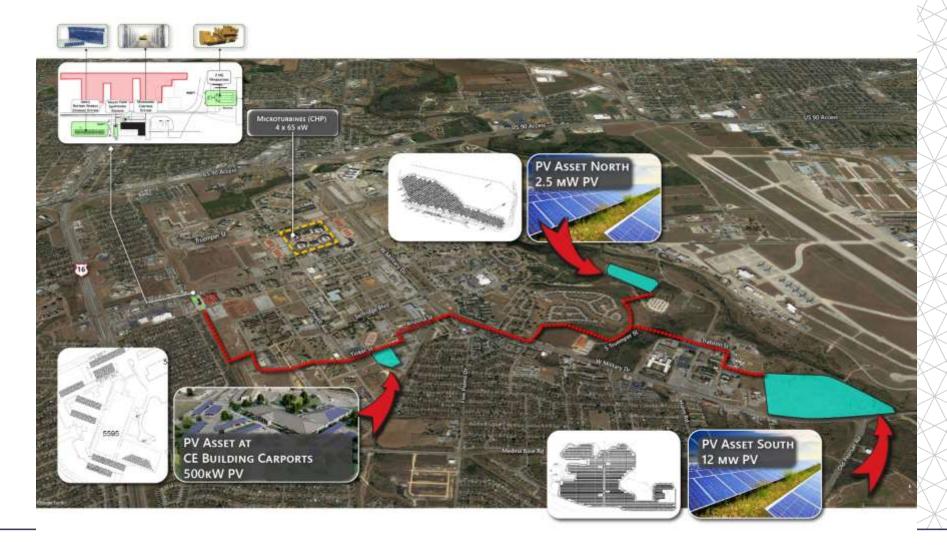
- ESPC Background
- Distributed Generation Architecture
- Critical Mission Load Assessment
- Power Modeling
- Microgrid Concept Design
- Monitored Risks and Recommendations

Microgrid Benefits

- Leverage the ESPC contract vehicle to provide comprehensive mission support with enhanced resiliency and energy security measures
 - Provide reliable, resilient power to critical facilities and backup power to nearly half of the base loads
 - Distributed Generation assets operating in conjunction with a microgrid for indefinite mission support in the event of a LoU
 - Island from commercial power grid during periods of interruption
 - Increase use of renewable energy (EPACT 05; EISA '07) with battery and generation backup capabilities

11.7 MW Southern Landfill Cap Array

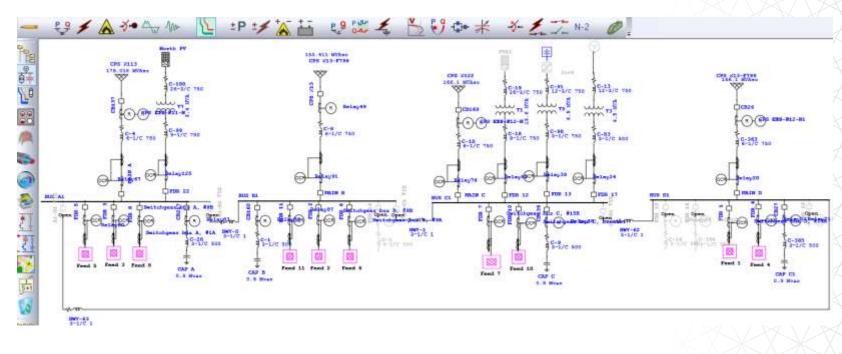
ESPC Background


- Project Development ECMs:
 - 150,000 new LED luminaries with exterior lighting control and centralized monitoring
 - ~15 MW of Solar PV, landfill, roof-mount and carport
 - Over 2,000,000 gallons of thermal energy storage for load shifting
 - DDC controls upgrades and advanced sequencing in over 285 buildings
 - 4 MW / 8 MWh Battery Energy Storage with 4 MW of gas fired generation for critical load support
 - 585 kW of Combined Heat and Power (CHP) at Critical Loads
- Environmental Assessment:
 - AF 813/814 and NEPA/EA Process underway with support from AFCEC and CE
- Timeline & Way Ahead
 - Desing/Build Award Summer 2018, Completion Summer 2020

Distributed Generation Architecture

- A dedicated network facilities seamless transition to critical facility loads during a LoU via a dedicated controls network
- Solar PV Array
 - 11.7MW South Landfill
 - 2.59MW North Landfill
 - 474kW CE Building Carport
- Battery Energy Storage (BESS)
 - 4MW-8MWH Lithium Ion
- Stand-by Generators
 - (2) 2MW Gas reciprocating engine generators
- Resulting in fully resilient and seamless transition during a critical event that can maintain operation of critical load indefinitely

Distributed Generation Architecture


STANLEYCONSULTANTS

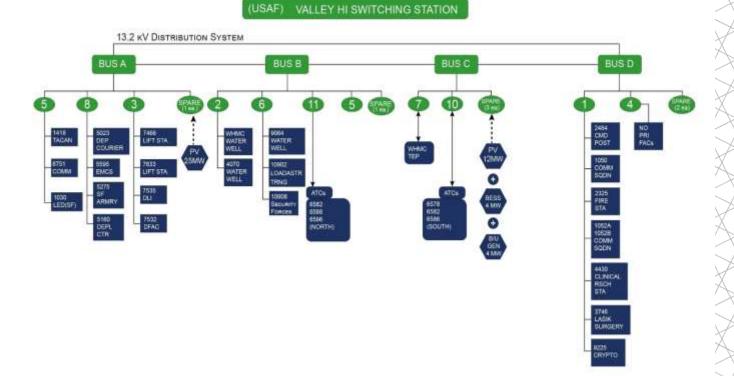
Critical Mission Load Assessment

- Interviews with JBSA Leadership
- CEMP 10-2 Facility Priority List
 - Basic Military Training Campus Airmen Training Complexes (ATC)
 - 25th AF (Intel)
 - 24th AF (Cyber)
 - 502nd Communications Squadron
 - 37th TRW (Training Wing)
 - San Antonio Military Medical Center (SAMMC)
 - Fire Station / Emergency Operations Center

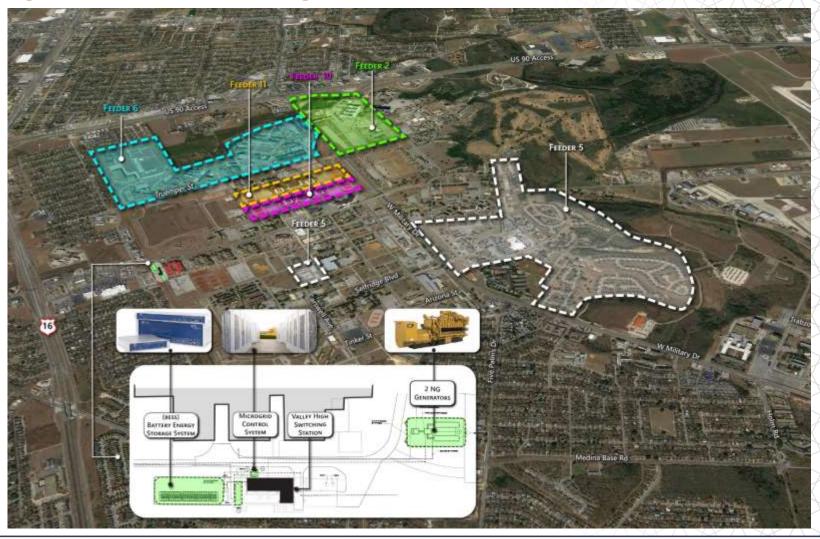
Power Modeling

- Electrical Model Setup:
 - Collect existing data Single-Lines, Equipment cut sheets, O&Ms,
 - Distribution Model in ETAP
 - Field validation (Survey) and equipment assessment

Power Analysis


- Load Flow Study:
 - Current configuration validated cable sizing, breaker sizing, switchgear ratings
 - Proposed configuration validated DG insertion points capable of accommodating new equipment (Normal, Islanding)
- Short Circuit Analysis:
 - Current & proposed configurations evaluated short circuit ratings of equipment
- Coordination Study:
 - Current configuration validation of protection scheme
 - Current Issues 15 mis-coordinated fuses, for immediate corrective action

Power Analysis


- Reliability Analysis:
 - Reviewed circuit configurations, proposed equipment
 - Redundancy, loop fed, review of outage history
- Transient Analysis:
 - Evaluated DG interaction/behavior with MV system
 - Islanding & fast load shed sequencing
 - Key outcome development of criteria for inverters of BESS & PV
 - BESS and NG Generation are essential for stability

Microgrid Concept Design

- Conceptual Design considers:
 - Load locations
 - Optimization (generation-to-load)
 - Ties
 - Switching
 - Re-wiring requirements
 - Load shed priorities
 - Expansion / Scalability consideration

Microgrid Coverage

STANLEYCONSULTANTS

Concept of Operations

- Normal Mode
 - MCS to monitor loads
 - DG to reduce peak loads
 - Future: Demand Response from Utility (Natural Gas Generators)
- Islanding Mode
 - MCS to determine Loss of Utility and takes system control and fast load shed
 - BESS to provide ride through power No blackstart
 - BESS to provide stability and frequency control
 - PV to provide power during peak periods
 - Natural Gas Generators to provide baseload capacity and additional stability
 - MCS to monitor loads and additional load shed to match load to generation

Lessons Learned – Monitored Risks

- Jurisdictional Provider Concerns CPS Energy
- Grid Interconnect CPS Application
- NEPA Environmental Assessment
- Utilities Privatization
- Master Plan (need for)

Summary

- Energy resiliency microgrids can be delivered through 3rd party financed projects
- State of the art technologies (MCS, PV, BESS, Microturbines) are driving down costs and increasing performance
- On-base, distributed generation can be incrementally matched to critical facility loads and island from the grid during outages
- DG peak shaving capability can save significant utility dollars
- Up-front planning will optimize execution costs and performance
- DoD, USAF energy resiliency project scoring may provide more resources
- *Microgrids* = *Resiliency* = *Mission Assurance*!

Questions

STANLEYCONSULTANTS