UMN Distribution Piping Assessment Utilizing Advanced Guided Wave Technology
• University of Minnesota Twin Cities Campus
 ◦ 392 acres with 22 million ft\(^2\) building floor space
Steam Distribution – 11 miles of distribution system piping

- Minneapolis Campus
 - ~10% Buried Piping
- St. Paul Campus
 - ~20% Buried Piping

Problem – How to determine remaining pipe life for the buried piping?
- Cost per 100 ft of buried piping replacement
 - ~$100k
- Cost to find and repair a buried pipe leak - ~$35k to $50k
Potential Solutions

- **Excavate and inspect**
 - High cost
 - Positive/Actionable results

- **Thermal Imaging**
 - Good once a leak has developed, but doesn’t provide a material condition assessment of the piping.

- **Use inspection pig (similar to oil/gas pipe line inspection technique)**
 - Problems dealing with expansion loops and smaller pipe diameters
 - Need to construct entrance/exit stations

- **Use Ultrasonic NDE techniques**
 - Most promising and potentially cost effective approach
Structural Integrity Associates – Guided Wave NDE Technology

- Use a collar containing several ultrasonic devices to send a signal down the pipe to find discontinuities within the detector range.
What is Needed to be Effective?

- **Good documentation** of buried piping ‘As-Built’ configuration
- **Sufficient space** attach the collar
 - Nominal 12” of straight pipe with no pipe attachments immediately adjacent to the collar (e.g., pipe anchor, expansion joint, pipe elbow, etc.).
 - Clean pipe surface
- **Pipe/process temperature** <~180F
What Can Be Identified?
- The **specific location** of any pipe discontinuity
 - How far from the test collar
 - What position around the pipe
 - The significance of the indication (amount of wall loss)
- Given the pipe age when inspected and the evaluated condition, can **estimate remaining pipe life**.

What Impacts Results?
- **Each attachment**, pipe weld, degraded portion reduces the length of piping that can be inspected from a single point.
 - Best case – upwards of 350 ft of pipe can be inspected.
- Requires a **trained technician** to take and evaluate the data.
Additional Comments and Questions

David Christiansen
Principal Mechanical Engineer
UM Facilities Management – Energy Management

christia@umn.edu

Joseph Maciejczyk
Associate
Structural Integrity Associates, Inc.

jmaciejczyk@structint.com