Closed-Loop Steam Distribution

Andrew Kozak, PE, AEE Fellow
Director of Mechanical Engineering
646.205.7207
AKozak@brplusa.com

Patrick Lach
Steam Specialist | International Sales Manager
Ca.LinkedIn.com/in/ SteamSpecialist
Patrick@Maxi-Therm.net
Maxi-Therm Client Pedigree

University of Colorado Denver

University of Wisconsin Madison

Montclair State University

Yale University

THE UNIVERSITY OF NEW MEXICO

THE UNIVERSITY of CHICAGO

University of Connecticut

GRAND VALLEY STATE UNIVERSITY

PENN STATE

Western Washington University

Penn

TOWSON UNIVERSITY

Ohio State

Harvard

Carnegie Mellon
1. Steam Basics
2. Hydronic vs Steam
3. Advantages of Closed-Loop Steam
4. Vertically-Flooded Design
5. Corrosion Prevention
6. Hot Water Applications
7. Example in Practice: Vassar Hospital
8. What is Next? (GenSet)
Steam Basics

Cities With Central Steam

- New-York
- Philadelphia
- Boston
- Baltimore
- Washington DC
- Hartford
- Buffalo
- Rochester
- Minneapolis
- Milwaukee
- Denver
- Montreal
- Vancouver
- Pittsburg
- Saint-Louis
- Tulsa
- Kansas City
- San Francisco
- New Orleans
- Detroit
- Cambridge
- Los Angeles
- Houston
- San Antonio
- Austin
- Richmond
- San Diego
- Grand Rapids
Hydronic Vs Steam

Properties of Saturated Steam

Raising 1 lb. of WATER 1°F \rightarrow 1 BTU of Energy

Raising 1 lb. of STEAM* 1°F \rightarrow 970 BTU of Energy

*AT ATMOSPHERIC PRESSURE

<table>
<thead>
<tr>
<th>Pressure (psig)</th>
<th>Temp (°F)</th>
<th>Heat (BTU/lb)</th>
<th>Volume (ft³/lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sensible</td>
<td>Latent</td>
</tr>
<tr>
<td>0</td>
<td>212</td>
<td>180</td>
<td>970</td>
</tr>
<tr>
<td>1</td>
<td>213</td>
<td>184</td>
<td>968</td>
</tr>
<tr>
<td>2</td>
<td>219</td>
<td>187</td>
<td>966</td>
</tr>
<tr>
<td>3</td>
<td>222</td>
<td>190</td>
<td>964</td>
</tr>
<tr>
<td>4</td>
<td>226</td>
<td>193</td>
<td>962</td>
</tr>
<tr>
<td>5</td>
<td>227</td>
<td>195</td>
<td>961</td>
</tr>
<tr>
<td>6</td>
<td>230</td>
<td>198</td>
<td>959</td>
</tr>
<tr>
<td>7</td>
<td>232</td>
<td>201</td>
<td>957</td>
</tr>
<tr>
<td>8</td>
<td>235</td>
<td>203</td>
<td>956</td>
</tr>
<tr>
<td>9</td>
<td>237</td>
<td>206</td>
<td>954</td>
</tr>
<tr>
<td>10</td>
<td>239</td>
<td>208</td>
<td>953</td>
</tr>
<tr>
<td>11</td>
<td>241</td>
<td>211</td>
<td>950</td>
</tr>
<tr>
<td>12</td>
<td>244</td>
<td>212</td>
<td>948</td>
</tr>
<tr>
<td>13</td>
<td>247</td>
<td>215</td>
<td>946</td>
</tr>
<tr>
<td>14</td>
<td>250</td>
<td>217</td>
<td>944</td>
</tr>
<tr>
<td>15</td>
<td>252</td>
<td>220</td>
<td>944</td>
</tr>
<tr>
<td>16</td>
<td>254</td>
<td>222</td>
<td>942</td>
</tr>
<tr>
<td>17</td>
<td>256</td>
<td>224</td>
<td>940</td>
</tr>
<tr>
<td>18</td>
<td>258</td>
<td>227</td>
<td>938</td>
</tr>
<tr>
<td>19</td>
<td>260</td>
<td>230</td>
<td>936</td>
</tr>
<tr>
<td>20</td>
<td>262</td>
<td>232</td>
<td>934</td>
</tr>
<tr>
<td>21</td>
<td>264</td>
<td>235</td>
<td>932</td>
</tr>
<tr>
<td>22</td>
<td>266</td>
<td>237</td>
<td>930</td>
</tr>
<tr>
<td>23</td>
<td>268</td>
<td>240</td>
<td>928</td>
</tr>
<tr>
<td>24</td>
<td>270</td>
<td>242</td>
<td>926</td>
</tr>
<tr>
<td>25</td>
<td>272</td>
<td>245</td>
<td>924</td>
</tr>
<tr>
<td>26</td>
<td>274</td>
<td>247</td>
<td>922</td>
</tr>
<tr>
<td>27</td>
<td>276</td>
<td>250</td>
<td>920</td>
</tr>
</tbody>
</table>
Hydronic Vs Steam

Hydronic (212°F)

\[35,140,000 \frac{Btu}{hr} \times \frac{1}{180} \frac{lb}{Btu} \times \frac{1}{8.33} \frac{Gal}{lb} \times \frac{1}{60} \frac{hr}{min} = 391 \text{ GPM} \]

Steam (100psi)

\[35,140,000 \frac{Btu}{hr} \times \frac{1}{1,190} \frac{lb}{Btu} \times \frac{1}{8.33} \frac{Gal}{lb} \times \frac{1}{60} \frac{hr}{min} = 59 \text{ GPM} \]

Lower flow rate → Smaller pipes required

Reduced Pump Energy

Hydronic

- 90 HP

Steam

- 15 HP

The pumps represent 3% of the overall energy needed for the hydronic loop.
Hydronic Vs Steam

Conventional Method

Steam Method
Advantages of Closed-Loop Steam

\[\dot{m}_{fs} = \frac{\dot{m}_c (h_c - h_{fc})}{h_{fg}} \quad R_{fs}(\%) = 100 \frac{\dot{m}_{fs}}{\dot{m}_c} \]

- \(\dot{m}_{fs} = \) mass flow rate of flash steam
- \(\dot{m}_c = \) mass flow rate of condensate
- \(h_c = \) enthalpy of condensate
- \(h_{fc} = \) enthalpy of flash condensate
- \(h_{fg} = \) latent heat of flash steam
- \(R_{fs} = \) flash steam ratio (%)
Advantages of Closed-Loop Steam

- No flash tank required → No Vent to roof
- Energy savings of 5-20%
- Safety and reliability
 - No steam safety valve needed
- Simplicity
- **No acid contamination**
 - Up to 6 times less corrosive on condensate piping
- Can use **high** or **low pressure steam**
Advantages of Closed-Loop Steam

- **Less make-up water** required
- **No PRV** required for steam
- **No condensate receiver pump** needed to return steam through loop
- **Smaller pipe size** due to higher energy content
- **Lower maintenance costs**
- **Few chemicals** and **fewer return lines** (with longer lifespan)
- **40%-60% smaller footprint**
- **Fully automated** control system
- **Digital Energy readouts**
- **No Noise**
Vertically-Flooded Design

- Vary % of shell flooded to avoid flash
- Can use low, medium, or high pressure steam
- No PRV downstream of boiler
- Acts as a Condensing Heat Exchanger

<table>
<thead>
<tr>
<th>Process</th>
<th>Pressure (psig)</th>
<th>BTU/h</th>
<th>Sensible (BTU/lb)</th>
<th>Latent (BTU/lb)</th>
<th>Total (BTU/lb)</th>
<th>lbs/h</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>6</td>
<td>4 000 000</td>
<td>-</td>
<td>959</td>
<td>959</td>
<td>4 171</td>
<td>-</td>
</tr>
<tr>
<td>Flooded</td>
<td>6</td>
<td>4 000 000</td>
<td>50</td>
<td>959</td>
<td>1 009</td>
<td>3 964</td>
<td>5,0%</td>
</tr>
<tr>
<td>Flooded</td>
<td>100</td>
<td>4 000 000</td>
<td>158</td>
<td>881</td>
<td>1 039</td>
<td>3 850</td>
<td>7,7%</td>
</tr>
</tbody>
</table>
• Uses latent and sensible heat of steam to heat liquid
• Oversized vertical shell & tube heat exchanger
• Flooded condensate subcooled to 200°F
• Level of condensate varied by control valve
 • Used to control temperature instead of throttling steam
• Improvements from comparable European models:
 • Steam can be any pressure
 • Control set-point of heated liquid outlet
Vertically-Flooded Design

Vertically Flooded Heat Exchangers

Heat Map Showing Tube Flooding to Avoid Flash
Make-Up Water Reduction

• Causes for make-up water to be added traditionally:
 • Boiler blow-down
 • Leaks
 • Flash steam

• Vertical heat exchanger eliminates flash
 • Condensate is subcooled below boiling point
 • Stays as a liquid
 • High pressure condensate eliminates need for condensate pump
Vertically-Flooded Design

Evaluation - Operating Cost Comparison: Exchanger with Full Load

<table>
<thead>
<tr>
<th></th>
<th>Conventional</th>
<th>Vertically-Flooded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure (psig)</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>Energy Transferred (Mbtu/hr)</td>
<td>6.01</td>
<td>6.01</td>
</tr>
<tr>
<td>Steam Flow Rate (lbs/hr)</td>
<td>6,307</td>
<td>5,991</td>
</tr>
<tr>
<td>Percentage of Water Lost to Flash</td>
<td>2.85%</td>
<td>0%</td>
</tr>
<tr>
<td>Flash Loss Rate</td>
<td>180</td>
<td>-</td>
</tr>
<tr>
<td>Energy to Heat Condensate (Mbtu/hr)</td>
<td>0.38</td>
<td>0.44</td>
</tr>
<tr>
<td>Energy to Heat Make Up (Mbtu/hr)</td>
<td>0.04</td>
<td>-</td>
</tr>
<tr>
<td>Energy to Vaporize (Mbtu/hr)</td>
<td>5.86</td>
<td>5.57</td>
</tr>
<tr>
<td>Total (Mbtu/hr)</td>
<td>6.28</td>
<td>6.01</td>
</tr>
</tbody>
</table>

Savings

<table>
<thead>
<tr>
<th>Hours</th>
<th>Dollars $</th>
<th>Tons of CO₂ per Million BTUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,000</td>
<td>6,660.99</td>
<td>38.92</td>
</tr>
<tr>
<td>3,000</td>
<td>9,991.49</td>
<td>58.38</td>
</tr>
</tbody>
</table>

(0.05843 ton of CO₂ per Million BTUs)
Corrosion Prevention

• Traditional systems are 6.2 times more corrosive\(^1\)

• Deaerator uses low pressure steam to drive out dissolved gases

• Sensibly heats make-up water from 40°F to 205°F
 • Condensate reclamation reduces need for make-up water

• Cooler condensate reduces cavitation
 • Hot condensate cavitates as pump pulls it into the volute

• Lower make-up water requirement \(\rightarrow\) less chemicals for treatment \(\rightarrow\) cleaner steam running through pipes
 • Cuts surface blowdown in half
 • Delivers 97% quality steam (3% moisture)

1. Corrosion tests conducted independently at hospital in Montreal over 94 day period. Maxi-Therm has corrosion rate of 2.36 mills per year compared to 14.63 mills per year using conventional methods (both using alloy C1010 black iron)
Building Heat Application

- Can control liquid outlet temp to \(\pm 2^\circ F \) for building heat

- Building heat applications:
 - Heating water/ glycol
 - Hot oil or other heat transfer fluids
 - Wash stations
 - Emergency showers
 - Reactors, pasteurizers, jacketing
 - Booster heaters for kitchens
 - Heat recirculation water at 250°F (no bacteria)

- Can handle liquid flow between 35 and 850 usgpm (and can go above 2,000 usgpm if needed)

Domestic Hot Water Application

- Most facilities use over 50% of steam for hot water production
 - Service water
 - Domestic water
 - Reheat
 - Clean steam

- Can control liquid outlet temp to \(\pm 4^\circ F \) for domestic hot water

- Uses Vertically Flooded Heat Exchanger (VFHX)

- Smaller than conventional storage tank heaters
 - Can be wheeled through a doorway

- Smaller reservoir and higher temperatures
 - Stops growth of Legionella bacteria
Example in Practice: Vassar Hospital
Example in Practice: Vassar Hospital

Flash Steam Loss Calc

<table>
<thead>
<tr>
<th>Flash Steam (lbs)</th>
<th>Make-Up Water (gal)</th>
<th>Flash Steam Heat Loss (Btu)</th>
<th>Additional Heat Vaporization (Btu)</th>
<th>Additional Gas to Heat Cond. (Btu)</th>
<th>Gas Consumed (Thers)</th>
<th>Cond. Flow Rate (GPM)</th>
<th>Pump Energy (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000,406</td>
<td>120,097</td>
<td>157,063,776</td>
<td>1,308,848,422</td>
<td>15,362,907</td>
<td>17,000</td>
<td>50,126</td>
<td>1,309</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flash Steam Loss Cost</th>
<th>Cost (in $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Savings:</td>
<td>$14,960</td>
</tr>
<tr>
<td>Water Savings:</td>
<td>$432</td>
</tr>
<tr>
<td>Chemical Savings:</td>
<td>$480</td>
</tr>
<tr>
<td>Electrical Savings:</td>
<td>$1,309</td>
</tr>
<tr>
<td>Total Savings:</td>
<td>$15,873</td>
</tr>
</tbody>
</table>

- Eliminating flash losses to the atmosphere **saves energy and money**
 - Less gas to reheat make-up water to usable temperature
 - Less make-up water lost to high-pressure water flashing to steam
 - Lower volume of water to chemically treat
 - Less pump energy to pull in make-up water
Effective designs have positive environmental impacts

- 705,000 SF
- 264 patient beds
- 16 ORs (~800 SF each)
- LEED 2009 Silver rating
- Fuel gas load: 90,000 CFH
- Heating density: 65 Btu/SF
Example in Practice: Vassar Hospital

Heat Exchanger (Steam-Water) Schedule

<table>
<thead>
<tr>
<th>Unit</th>
<th>Service</th>
<th>EWT (°F)</th>
<th>LWT (°F)</th>
<th>GPM</th>
<th>Water Side (Tube)</th>
<th>Steam Side (Shell)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Main HVAC Heating</td>
<td>172</td>
<td>220</td>
<td>2,275</td>
<td>5</td>
<td>31,850</td>
</tr>
<tr>
<td>2</td>
<td>Domestic Water Heater</td>
<td>40</td>
<td>140</td>
<td>40</td>
<td>3</td>
<td>2,000</td>
</tr>
<tr>
<td>3</td>
<td>Non-Potable Hot Water Heater</td>
<td>40</td>
<td>140</td>
<td>30</td>
<td>2</td>
<td>1,500</td>
</tr>
<tr>
<td>4</td>
<td>Snow Melt</td>
<td>105</td>
<td>130</td>
<td>111</td>
<td>10</td>
<td>1,388</td>
</tr>
</tbody>
</table>

Steam Boiler

<table>
<thead>
<tr>
<th>Number</th>
<th>Operating Pressure</th>
<th>Pounds/ Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLR-1</td>
<td>85</td>
<td>24,150</td>
</tr>
<tr>
<td>BLR-2</td>
<td>85</td>
<td>24,150</td>
</tr>
<tr>
<td>BLR-3</td>
<td>85</td>
<td>24,150</td>
</tr>
</tbody>
</table>

Clean Steam Generator Schedule (Steam to Steam)

<table>
<thead>
<tr>
<th>Number</th>
<th>Service</th>
<th>Source Side (HPS)</th>
<th>Shell Side (Clean Steam)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PSIG</td>
<td>Pounds/Hour</td>
<td>PSIG</td>
</tr>
<tr>
<td>1</td>
<td>AHU Humidifiers</td>
<td>85</td>
<td>10832</td>
</tr>
</tbody>
</table>
What is Next?

GenSet Replaces PRV
- Potential Energy savings with a closed-loop steam system
- Self-contained, skid mounted
- No external oil lubrication needed
- Generator included

Design Specs
- **250 PSI to 10 PSI outlet**
 - 50 KW (2,500lbs./hr.) Office building
 - 100 KW (5,000lbs./hr.) Office building or large hotel
 - 400 KW (5,000lbs./hr.) Small campus or a small town

GenSet Diagram
- Small footprint, lightweight
- 5:1 turndown
- Small Footprint
- Easy annual maintenance (bearing and seals)
- Monitors electric grid and generator power for safe and easy use
What is Next?

Savings ($0.10/kW)

100 kW:

\[100 \text{ kW} \times 8,700 \text{ hrs/yr} \times 0.10/\text{kW} - 12,000 \text{ maintenance} = 75,000/\text{yr} \]

400 kW:

\[400 \text{ kW} \times 8,700 \text{ hrs/yr} \times 0.10/\text{kW} - 20,000 \text{ maintenance} = 328,000/\text{yr} \]

Return on Investment (ROI)

100 kW:

\[
\frac{\text{cost} + \text{installation} + \text{consultants} - \text{incentives}}{\text{savings}} = \frac{260,000 + 104,000 + 72,800 - 43,680}{75,000} = 5.24 \text{ years}
\]

400 kW:

\[
\frac{\text{cost} + \text{installation} + \text{consultants} - \text{incentives}}{\text{savings}} = \frac{450,000 + 180,000 + 126,000 - 75,600}{328,000} = 2.1 \text{ years}
\]
Thank you

Andrew Kozak, PE, AEE Fellow
Director of Mechanical Engineering
646.205.7207
AKozak@brplusa.com

Patrick Lach
Steam Specialist | International Sales Manager
Ca.LinkedIn.com/in/ SteamSpecialist
Patrick@Maxi-Therm.net

www.brplusa.com
@BRplusA
www.linkedin.com/company/brplusa

7559 MB Jodoin
Montreal, Quebec, Canada
www.maxi-therm.net
www.youtube.com/channel/UCdiWSCH7m1XnjsFOYm_GstQ
www.linkedin.com/company/maxi-therm-inc/-/about/