

Campus Energy 2019: February 26th – March 1st 2019

Closed-Loop Steam Distribution

Andrew Kozak, PE, AEE Fellow

Director of Mechanical Engineering 646.205.7207 AKozak@brplusa.com

Patrick Lach

Steam Specialist | International Sales Manager Ca.LinkedIn.com/in/ SteamSpecialist Patrick@Maxi-Therm.net

THERM

Maxi-Therm Client Pedigree

- **1. Steam Basics**
- 2. Hydronic vs Steam
- 3. Advantages of Closed-Loop Steam
- 4. Vertically-Flooded Design
- **5. Corrosion Prevention**
- 6. Hot Water Applications
- 7. Example in Practice: Vassar Hospital
- 8. What is Next? (GenSet)

4

Steam Basics

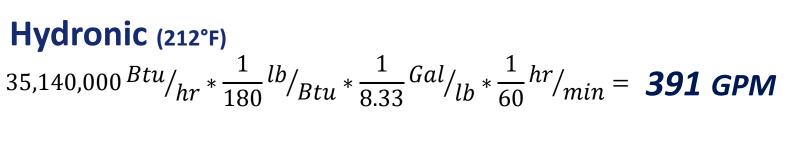
Cities With Central Steam

- New-York
- Philadelphia
- Boston
- Baltimore
- Washington DC
- Hartford
- Buffalo
- Rochester
- Minneapolis
- Milwaukee
- Denver
- Montreal
- Vancouver
- Pittsburg

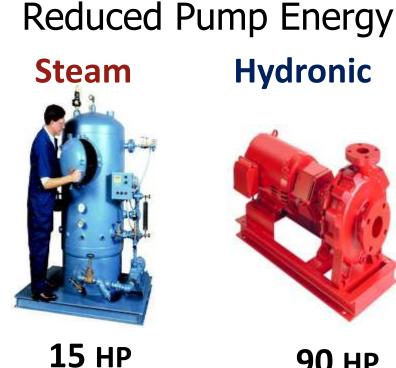
- Saint-Louis
- Tulsa
- Kansas City
- San Francisco
- New Orleans
- Detroit
- Cambridge
- Los Angeles
- Houston
- San Antonio
- Austin
- Richmond
- San Diego
- Grand Rapids

MAXI

Hydronic Vs Steam


Raising 1 lb. of WATER 1°F \rightarrow 1 BTU of Energy Raising 1 lb. of STEAM* 1°F \rightarrow 970 BTU of Energy

Pressure	Temp.	н	eat (BTU/II	b)	Volume (f	ft^3/lb)
(psig)	(°F)	Sensible	Latent	Total	Condensate	Steam
0	212	180	970	1150	0.01672	26.80
1	215	184	968	1152	0.01674	25.21
2	219	187	966	1153	0.01676	23.79
3	222	190	964	1154	0.01679	22.53
4	224	193	962	1155	0.01681	21.40
5	227	195	961	1156	0.01683	20.38
6	230	198	959	1157	0.01685	19.46
7	232	201	957	1158	0.01687	18.62
8	235	203	956	1159	0.01689	17.85
9	237	206	954	1160	0.0169	17.14
10	239	208	953	1161	0.01692	16.49
12	244	212	950	1162	0.01696	15.33
14	248	216	947	1163	0.01699	14.33
16	252	220	944	1164	0.01702	13.45
100	338	309	881	1190	0.01785	3.8910
105	341	312	878	1190	0.01789	3.7360
110	344	316	876	1192	0.01792	3.5940
115	347	319	873	1192	0.01796	3.4620
120	350	322	871	1193	0.01799	3.3400
125	353	325	868	1193	0.01803	3.2260


Hydronic Vs Steam

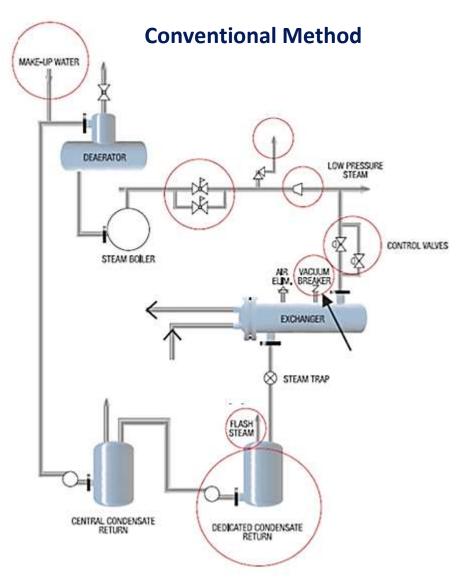
Steam (100psi)

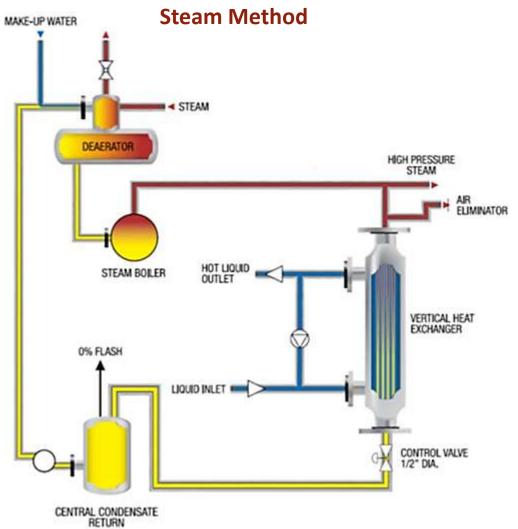
 $35,140,000 \frac{Btu}{hr} * \frac{1}{1,190} \frac{lb}{Btu} * \frac{1}{8,33} \frac{Gal}{lb} * \frac{1}{60} \frac{hr}{min} = 59 \text{ GPM}$

Lower flow rate \rightarrow Smaller pipes required

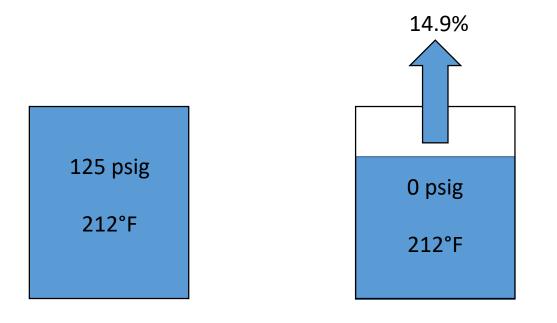
90 HP

MAXI


The pumps represent 3% of the overall energy needed for the hydronic loop



Hydronic Vs Steam



BRA Advantages of Closed-Loop Steam

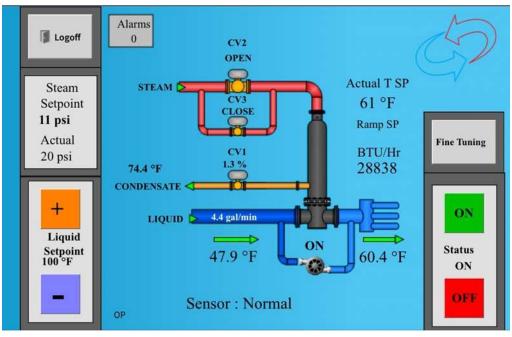
$$\dot{m}_{fs} = \frac{\dot{m}_c (h_c - h_{fc})}{h_{fg}}$$
 $R_{fs}(\%) = 100 \frac{\dot{m}_{fs}}{\dot{m}_c}$

 $\dot{m}_{fs} = mass flow rate of flash steam$ $\dot{m}_c = mass flow rate of condensate$ $h_c = enthalpy of condensate$ $h_{fc} = enthalpy of flash condensate$ $h_{fg} = latent heat of flash steam$ $R_{fs} = flash steam ratio (%)$

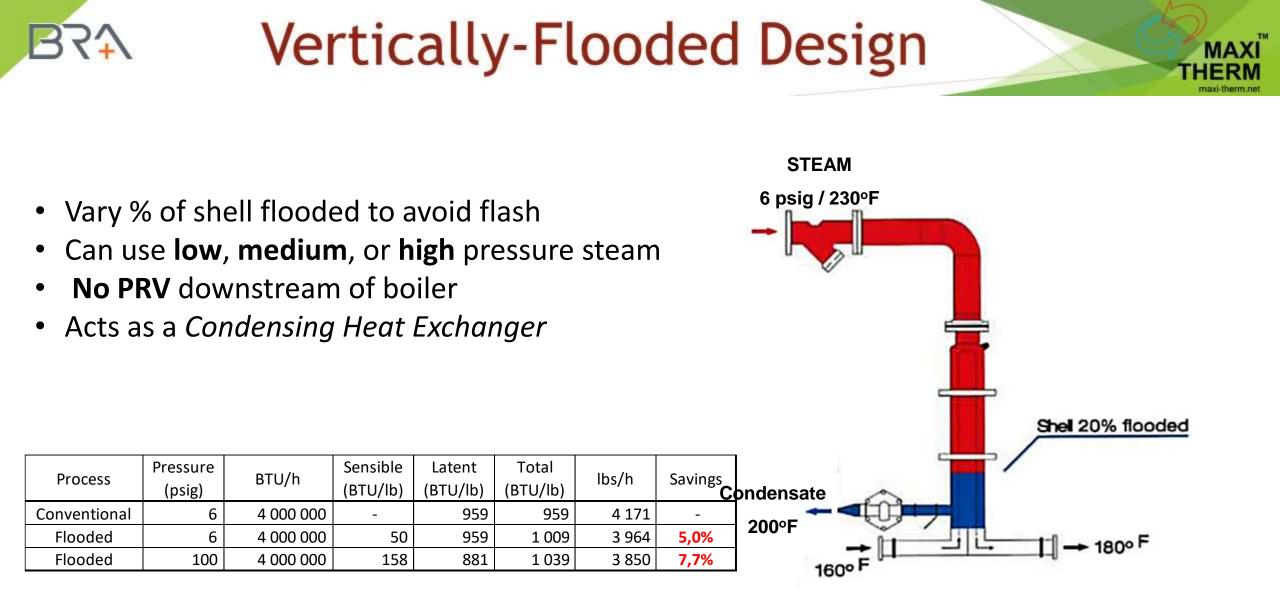
MAXI

BRA Advantages of Closed-Loop Steam

- No flash tank required \rightarrow No Vent to roof
- Energy savings of 5-20%
- Safety and reliability
 - No steam safety valve needed
- Simplicity
- No acid contamination
 - Up to 6 times less corrosive on condensate piping
- Can use high or low pressure steam

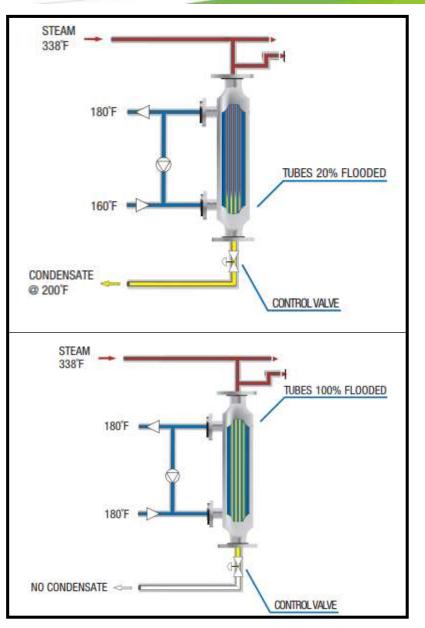

System and Size

BRA Advantages of Closed-Loop Steam



- No PRV required for steam
- No condensate receiver pump needed to return steam through loop
- Smaller pipe size due to higher energy content
- Lower maintenance costs
- Few chemicals and fewer return lines (with longer lifespan)
- 40%-60% smaller footprint
- Fully automated control system
- Digital Energy readouts
- No Noise

Digital Readout


0% FLASH, 200°F CONDENSATE RETURN

Vertically-Flooded Design

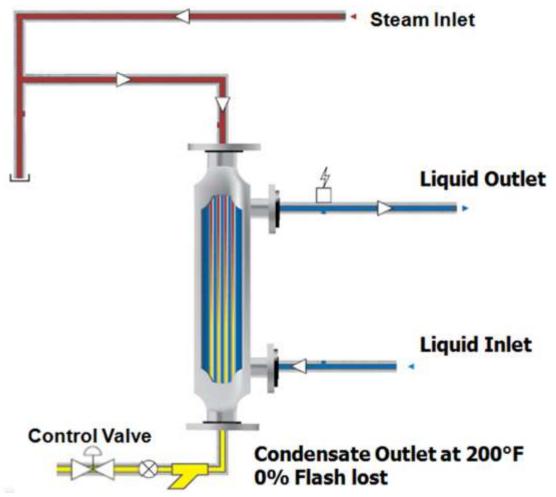
- Uses latent and sensible heat of steam to heat liquid
- Oversized vertical shell & tube heat exchanger
- Flooded condensate **subcooled** to **200°F**
- Level of condensate varied by control valve
 - Used to control temperature instead of throttling steam
- Improvements from comparable European models:
 - Steam can be any pressure
 - Control set-point of heated liquid outlet

Vertically Flooded Heat Exchangers

Vertically-Flooded Design

289

74.6


Heat Map Showing Tube Flooding to Avoid Flash

Vertically-Flooded Design

Make-Up Water Reduction

- Causes for make-up water to be added traditionally:
 - Boiler blow-down
 - Leaks
 - Flash steam
- Vertical heat exchanger eliminates flash
 - Condensate is subcooled below boiling point
 - Stays as a liquid
 - High pressure condensate eliminates need for condensate pump

Vertically-Flooded Design

Evaluation- Operating Cost Comparison: Exchanger with Full Load

	Conventional	Vertically-Flooded
Pressure (psig)	10	30
Energy Transferred (Mbtu/hr)	6.01	6.01
Steam Flow Rate (lbs/hr)	6,307	5,991
Percentage of Water Lost to Flash	2.85%	0%
Flash Loss Rate	180	-
Energy to Heat Condensate (Mbtu/hr)	0.38	0.44
Energy to Heat Make Up (Mbtu/hr)	0.04	
Energy to Vaporize (Mbtu/hr)	5.86	
Total (Mbtu/hr)	6.28	6.01

Savings				
Tons of CO ₂ per				
Hours	Dollars	Million BTUs		
2,000	\$6,660.99	38.92		
3,000	\$9,991.49	58.38		

(0.05843 ton of CO₂ per Million BTUs)

MAXI

222

Corrosion Prevention

- Deaerator uses low pressure steam to drive out dissolved gases
- Sensibly heats make-up water from 40°F to 205°F
 - Condensate reclamation reduces need for make-up water
- Cooler condensate reduces cavitation
 - Hot condensate cavitates as pump pulls it into the volute
- Lower make-up water requirement → less chemicals for treatment → cleaner steam running through pipes
 - Cuts surface blowdown in half
 - Delivers 97% quality steam (3% moisture)

1. Corrosion tests conducted independently at hospital in Montreal over 94 day period. Maxi-Therm has corrosion rate of 2.36 mills per year compared to 14.63 mills per year using conventional methods (both using alloy C1010 black iron)

B74

Hot Water Applications

Building Heat Application

- Can control liquid outlet temp to ±2°F for building heat
- Building heat applications:
 - Heating water/glycol
 - Hot oil or other heat transfer fluids
 - Wash stations
 - Emergency showers
 - Reactors, pasteurizers, jacketing
 - Booster heaters for kitchens
 - Heat recirculation water at 250°F (no bacteria)
- Can handle liquid flow between 35 and 850 usgpm (and can go above 2,000 usgpm if needed)

Hot Water From Steam Generator

Domestic Hot Water Application

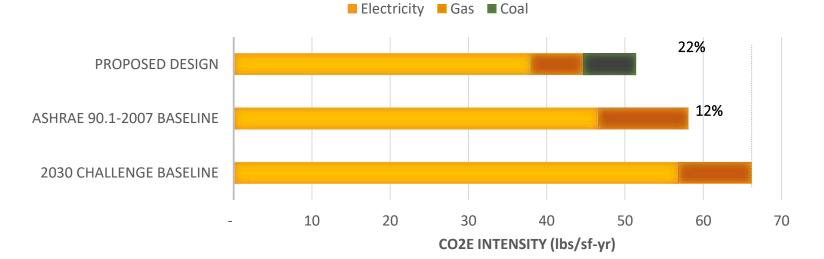
- Most facilities use over 50% of steam for hot water production
 - Service water
 - Domestic water
 - Reheat
 - Clean steam
- Can control liquid outlet temp to ±4°F for domestic hot water
- Uses Vertically Flooded Heat Exchanger (VFHX)
- **Smaller** than conventional storage tank heaters
 - Can be wheeled through a doorway
- Smaller reservoir and higher temperatures
 - Stops growth of Legionella bacteria

BRA Example in Practice: Vassar Hospital

BRA Example in Practice: Vassar Hospital

	Flash Steam Loss Calc								
Flash Steam	Make-Up	Flash Steam	Additional Heat	Additional Gas to	Gas Consumed	Cond. Flow	Pump Energy		
(lbs)	Water (gal)	Heat Loss (Btu)	Vaporization (Btu)	Heat Cond. (Btu)	(Therms)	Rate (GPM)	(kW)		
1,000,406	120,097	157,063,776	1,308,848,422	15,362,907	17,000	50,126	1,309		

Flash Steam Loss Cost					
Gas Savings:	14,960				
Water Savings:	\$	432			
Chemical Savings:	\$	480			
Electrical Savings:	\$	1,309			
Total Savings:	\$	15,873			


- Eliminating flash losses to the atmosphere saves energy and money
 - Less gas to reheat make-up water to usable temperature
 - Less make-up water lost to high-pressure water flashing to steam

- Lower volume of water to chemically treat
- Less pump energy to pull in make-up water

Effective designs have positive environmental impacts

- 264 patient beds
- 16 ORs (~800 SF each)
- LEED 2009 Silver rating
- Fuel gas load: 90,000 CFH
- Heating density: 65 Btu/SF

CARBON FOOTPRINT INTENSITY

BRA Example in Practice: Vassar Hospital

		Hea	t Exchange	r (Steam-V	Vater) Schedu	le		
					Water Side (Tube)		Steam Side (Shell)	
Unit	Service	EWT (°F)	LWT (°F)	GPM	PD (ft. H2O)	Min MBH	Operating Pressure	Flow Rate (lbs/h)
	1 Main HVAC Heating	172	220	2,275	5	31,850	85	31,640
	2 Domestic Water Heater	40	140	40	3	2,000	85	1,969
	3 Non-Potable Hot Water Heater	40	140	30	2	1,500	85	1,477
- 8	4 Snow Melt	105	130	111	10	1,388	85	1,992

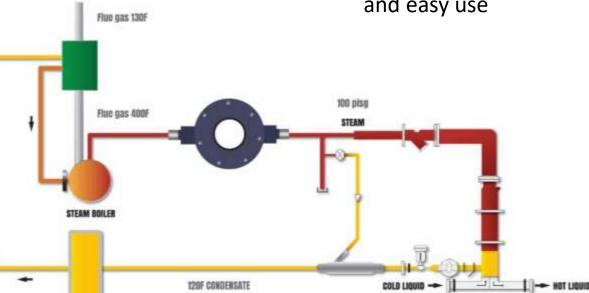
MAXI

	Steam Boiler	8	
Number	Operating Pressure	Pounds/ Hour	
BLR-1	85	24,150	
BLR-2	85	24,150	
BLR-3	85	24,150	

	Clean Ste	am Genera	ator Schedule (Steam to S	team)		
Number		Source	Side (HPS)	Shell Side (Clean Steam)			
	Service	PSIG	Pounds/Hour	PSIG	Pounds/Hour	EWT	
1	AHU Humidifiers	85	10832	10	8500		40

What is Next?

GenSet Replaces PRV


- Potential Energy savings with a closed-loop steam system
- Self-contained, skid mounted
- No external oil lubrication needed •
- Generator included

- Small footprint, lightweight
- 5:1 turndown
- Small Footprint
- Easy annual maintenance (bearing and seals)
- Monitors electric grid and generator power for safe and easy use

Design Specs

250 PSI to 10 PSI outlet

50 KW (2,500lbs./hr.) Office building
100 KW (5,000lbs./hr.) Office building or large hotel
400 KW (5,000lbs./hr.) Small campus or a small town

GenSet Diagram

What is Next?

100 kW:

 $100 \, kW * 8,700 \, \frac{hrs}{yr} * \frac{0.10}{kW} - \frac{12,000}{maintenance} = \frac{75,000}{yr}$

400 kW:

400 kW * 8,700 hrs/yr * \$0.10/kW - \$20,000 maintenance = \$328,000/yr

Return on Investment (ROI)

 $\frac{100 \text{ kW:}}{55,000 \text{ cost} + $104,000 \text{ installation} + $72,800 \text{ consultants} - $43,680 \text{ incentives}}{575,000 \text{ savings}} = 5.24 \text{ years}$

 $\frac{400 \text{ kW:}}{\$450,000 \text{ cost} + \$180,000 \text{ installation} + \$126,000 \text{ consultants} - \$75,600 \text{ incentives}}{\$328,000 \text{ savings}} = 2.1 \text{ years}$

Thank you

B74 Andrew Kozak, PE, AEE Fellow **Director of Mechanical Engineering** 646.205.7207 AKozak@brplusa.com

105 Madison Ave, 10th Floor New York, NY, USA 10016 www.brplusa.com

@BRplusA

www.linkedin.com/company/brplusa

Patrick Lach

Steam Specialist | International Sales Manager Ca.LinkedIn.com/in/ SteamSpecialist Patrick@Maxi-Therm.net

7559 MB Jodoin Montreal, Quebec, Canada www.maxi-therm.net

www.youtube.com/channel/UCdiWSCH7m1XnjsFOYm_GstQ

www.linkedin.com/company/maxi-therm-inc-/about/