

Danish District
Energy Advisory

Moving District Energy Projects from Concept to Completion - DE Handbook As a Tool

The Danish District Energy Advisory (DDEA)

- often work in **Alliances** a group of Danish companies within same system technologies
 - E.g. from district energy produktion to distribution to end consumers
- Represent all aspects of district energy from planning, feasibility, design, production, distribution, implementation, commissioning and equipment supply
- work individually with Danish companies solely or within the Alliances also competitors!

District Energy Handbook As a Tool

Support the development of district heating, cooling and energy distribution in the North American market

Challenges to be addressed

Intimidation

Technical language

Clear understanding of benefits

Target Audience

High level decision makers

Process

Scan of existing district energy handbooks and guidelines

Feedback from facilities management

Feedback from decision makers

Feedback from district energy companies (North American and European)

District Energy in Denmark vs NA

Why is it 3-5 times more expensive to burry 1 feet of pre-insulated pipe 3-4 feet down in the ground in US than in Denmark?

- Lack of knowledge of the technologies and especially best practices
- Contractors and sub-contractors tend to put high contingency on the price estimates due to uncertainty of the technologies and best practices
- The advantages with the thin walled pre-insulated steel pipes is not utilized in full
- The cost of not spending enough money up front on proper education, training, site supervision and QA/QC procedures is underestimated

District Energy in Denmark/EU vs NA

European standards in NA

- general standards and regulations is measured to avoid fatal system and design failures, accidents, design mistakes etc. and to give guidelines for best practices and good design praxis.
- If you dive down in the difference between the standards it can actually be filtered down to not too many major differences.

Case Studies

Sheridan College, ON, Canada

- Complete steam to hot water conversion
- Danish pre-insulated pipes and Danish unit based ETS
- Propor planning and phasing
- Propor training of contractors, welders and site superviosrs
- Heat loss will most probably be reduced from 65% down to 15-25 %

City of Aarhus, Denmark - Carbon Neutral by 2030

- The backbone of carbon neutrality is low carbon district energy (heating and cooling)
 - Enabling a carbon emission reduction of 50 % in 10 years!
 - Heating and cooling production from biomass, municipal waste, straw, surplus heat, sea water heat pumps, electricity and geothermal heating to come
 - Danish pre-insulated pipes

Case studies

District Energy St. Paul

- NA largest low carbon district heating system
- Danish pre-insulated pipes
- Have been in operation since the late 80's!

Table of Contents

- Overview of District Energy
- History
- Energy sources
- Definition of district heating
- Its benefits and why DH is sustainable
- Difference between District Energy in the US and Europe/Scandinavia
- A brief overview of its history
- Regulation and standards differences
- Key elements of district energy
- What are important elements to measure its effectiveness
- Best practices in district energy
- Challenges in implementing DE in North America
- How to implement European Standard DE in North America
- Case Studies
- Glossary
- Bibliography

Stay Connected

http://b.link/energy26

Shikar@um.dk

nivils@um.dk